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Foreword
by Esther Dyson

In the software business, you don’t play to win the match. You play to win
the round and get a crack at the next. The only way to win the match is to
sell out and retire, and that’s boring. The Software Developer’s Sourcebook, part
of Addison-Wesley’s Software Development Series, will give you guidance
as you design and develop your product. Although Blaise Liffick’s Sourcebook
is written for both entrepreneurial and corporate situations, I prefer to
address those who consider themselves entrepreneurs, whether in fact or
in spirit.

As you attempt to develop your software and build a company or a
reputation around your products, you will find that you are competing not
so much for people to buy your product as for people to market it. With
the right people, you can do anything (almost!). Good products can be
bought, but good people who enhance, support, and market those products
are necessary to build a company. These people are all you can rely on in
the long run, for products become outdated and advertising becomes stale.
Only people have the capacity to keep your company winning round after
round; only people have the capacity to effect change.

The kinds of people you need are changing in line with the industry
itself. The marketplace is also changing, from a world of enthusiasts and
tinkerers to a world of sellers, who regard software as an artifact to be
developed, polished, produced, promoted, and sold, and of users, who
regard software as a tool that can solve their problems. The less the users
see of the software, the better, as far as they are concerned; if the computer
snatched away the problem and presented the answer, the user would be
delighted. The user doesn’t care how, or why, it works, as long as it does.
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In a sense, it’s hard for the creators and tinkers in this industry to accept
the fact that their task is becoming subordinate to that of the marketers,
financiers, and product planners. But this is software! they protest. You can’t
treat it like soap. But indeed we can; indeed we must.

Over the next few years software will continue to become more of a
business and less of a festival. Well-financed, well-organized, giant com-
panies are moving in. The small company with a good product will often
be squeezed out by the big company with an adequate product.

So, how do you—presumably a small company with a good product—
compete? There are two options: You can decide that you're another Lotus
and do things on a grand scale. (If you're really that good you probably
don’t need this book.) You can get the best venture capitalists, hire the most
brilliant marketing people, and get free publicity.

More likely, you've got a good product and need to find its market.
You're a small company with a bright future, and more interested in profits
and the satisfaction of doing a good job than in appearing on the “Today
Show.” Your market may be smaller than Lotus’s, but so are the resources
you’'ll have to use to reach it.

Indeed, one extremely fortunate fact of life for small software busi-
nesses is that software, as a tool, can be designed to solve specific problems.
Moreover, as we move toward “end-user computing,” we realize that users
expect to buy solutions, not general tools. Languages, operating systems,
utilities, and spreadsheets are of little interest to end users. They want
specific solutions. This fact has a significant impact on the industry’s struc-
ture.

While segmentation-—in the toothpaste industry, for example—is mostly
a creation of marketers, segmentation in the software industry reflects real-
ity. In other words, toothpaste may be targeted at smokers (Topol), would-
be sexpots (Close-Up), parents of children (Crest), and children themselves
(remember Stripe?), but basically all toothpastes perform the same function.
The difference is in the users’ (and marketers’) minds. Toothpaste is fun-
gible. In a pinch, a sexpot could use Crest, or a smoker could use Pepsodent,
with perfectly adequate results.

But try doing your payroll with a word processor, or running a bakery
with a dental office package. Except for systems software and tools such as
Symphony, dBASE 111, and the pfs series, software solves specific problems.
Only a very few packages actually compete with each other—although these
are the ones that attract most of the press’s attention.

Thus the micro software marketplace is inherently more hospitable to
small companies than, say, the toothpaste industry. While it is every com-
pany’s ambition to grow larger and more successful, even a small company
can compete on relatively equal footing with large companies if it addresses
a tightly-defined market. IBM may have billions of dollars to spend on
marketing, but you can rest assured that it will spend most of them on
hardware and on generic applications that solve a wide variety of general
problems but few specific ones. How to reach your best market is the topic
of the first book in the Software Development Series, Marketing Your Soft-
ware.

Thus, the trick to success in the software business is not finding oppor-
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tunities but fending them off. There’s a constant temptation to say, for
example, “We have a great package for lawyers that we could adapt with
just a little effort to suit doctors.” True, but it will take a lot of extra effort
to market to those doctors. Another pitfall is the extra machine “opportu-
nity.” “Let’s rewrite this package for the Yet-Another PC. It’s almost iden-
tical to the IBM PC.” But don’t forget the cost of rewriting the documen-
tation to fit the quirks of the Yet-Another and the time needed to support
its users. You might find that applying those same resources to your original
product would produce much better returns.

There’s a lot of talk about the perils of being a one-product company,
but the perils of being a two-half-product company are far greater, and,
unfortunately, far more prevalent. Launching a second product may be
exciting, while improving your original product can be a little dull. Re-
member, the users and potential buyers of your first product don’t care
about excitement; they want a good product that works. The reputation of
your first product will sell (or hinder sales of) not just your first product
but, eventually, your second. So make sure you earn that good reputation
before you move on to a second product.

Is the industry losing its romantic, pioneer spirit? Is it addressing such
a wide audience that it’s losing its special character? Perhaps. But good
marketing is not pandering, nor is acceptance of a product by an audience
of normal people rather than geniuses a sign of brainlessness. Indeed, in
the same vein as Frank Perdue’s immortal words, “It takes a tough man to
make a tender chicken,” it takes a smart programmer to write an easy
program.

Intellectual pleasure need not be limited to the arcane world of com-
puter programming. Developing products to fill a specific market—dis-
cerning a need, figuring out how to fill it, designing the product to do so,
and communicating to the potential buyer what you have done—can bring
a lot of satisfaction.

Esther Dyson is publisher of Computer Industry Daily, the industry’s first
serious daily newspaper. Formerly, she was president of EDventure Hold-
ings, Inc., and editor-in-chief of RELease 1.0.



Preface

There is a great secret that is being kept by all of the computer manufac-
turers, computer stores, and most publishers. That secret is revealed in this
book, and comes in two parts.

The first part is: “Programming is not easy.” Contrary to the popular
belief promoted by most computer manufacturers, it is not possible to learn
how to write programs by following their ten easy steps. To compound this
sinister plot, the vast majority of introductory books on programming also
promote this notion. This is especially true of books that deal with pro-
gramming in BASIC, which is the major programming language used on
microcomputers. The clear statement of such books is that all you have to
learn is a few of the BASIC instructions, and you, too, can make big money
as a programmer.

In some ways, this is a cruel hoax. It entices parents to buy computers
for their kids, because no parent wants to deprive their own flesh and blood
of the ultimate opportunity to learn everything that is worth learning. In
addition, parents are enticed to try their hands at programming, since it is
obviously so easy and canned programs are so expensive. It entices busi-
nesses and schools to buy computers and to attempt to develop their own
applications after only reading the instruction manual. In this case, people
who have enough real work to do are expected to take up the extra load
of programming.

This is not to say that these people do not have any need to program.
Indeed, there are many applications that are specific to a particular business,
or have not yet been developed, that these people might create for them-
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selves. It is often helpful to be able to develop short applications to perform
some small task.

In addition, many people find programming enjoyable. As a result,
they may get “hooked” on programming and wish to pursue it as more
than a hobby. These people have genuinely unique applications in mind
that could help solve many people’s problems. However, they lack the skill
of an experienced programmer to bring that application to life. The vast
majority of programming texts available are introductory in nature and
don’t provide enough depth to help this class of programmers. Books that
cover programming in more depth are usually written for computer sci-
entists and are much too technical in nature for a new programmer to use.

The second part of the big secret is: “There are many techniques that
professional programmers use that make life much easier.” The bad news
is that most of these techniques are hidden in those highly technical books,
not in the introductory ones.

This book, like most technical books, was written in response to a per-
ceived need. That need is obvious from watching many would-be program-
mers struggle with developing anything more than a trivial program. The
problem is that no one has yet told them about the “secret” techniques
professional programmers use to develop sophisticated, high-quality pro-
grams.

These techniques are not always easy to use, in that they require a fair
amount of work. The new programmer simply must not be easily discour-
aged. Programming is an arduous task, but it can be ultimately quite re-
warding. Although it might appear that some of the professional techniques
make the programming task more difficult, in reality they make it a much
simpler process overall.

This book reveals these “secret” professional techniques. The tech-
niques presented are essentially computer and language independent. How-
ever, some examples are given in the Microsoft version of BASIC and in
Pascal. The reader is expected to be familiar with programming in some
language, but it is not essential that the language be either BASIC or Pascal.

By faithfully following the techniques presented, the new programmer
can become experienced enough to develop systems of professional quality
and sophistication.
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Introduction

Software development (commonly called programming) has been var-
iously described as an art, a science, and an engineering discipline. There
is at least some truth in each, and there is no requirement for mutual
exclusion among them.

As an art, programming certainly has much of the flavor of something
immensely creative, and we have little trouble envisioning the programmer
as an artist who spends endless solitary hours putting words (code) to paper
in an order that is not only clever (and perhaps even unique) but is also
useable. While perhaps this is more like an interior designer or architect
than someone who takes brush in hand, there is an impression of many of
the brethren being a bit like a Beethoven or Van Gogh, consumed by their
work and creating masterpieces seemingly out of nothingness.

Certainly programming can be likened to the creation of a play or novel;
while the plot may seem somewhat familiar (i.e., the same topic has been
treated by more than one author), the way the writer says things is new, or
at least the writer has new insights into the particular topic. Even more in
imitation of art, creators of video arcade games are sometimes promoted
like rock stars. Home game cartridges are being packaged as elaborately as
any record album, including photo spreads and detailed biographies of the
programmer. Naturally, it is a moot point whether or not these imitations
are indeed art.

Many computer professionals, especially those of us in academe, have
been claiming rather loudly that the field is called Computer Science (you
can actually hear the capitalization), and that any other moniker is an insult.
Programming is definitely an example of the application of the scientific
method: recognition and formulation of a problem, observation and ex-
perimentation, and finally the formulation and testing of hypotheses.

However, it is in the area of experimentation that computer science is
most unlike physical sciences. Little can be done to provide experimental
data about a particular “problem” requiring a computer solution, in the
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same way that an architect can do little in experimenting with the design
of buildings. Certain immutable laws exist that provide boundaries for such
experimentation. Theoretical computer science is more in the realm of
mathematics, and in fact is a natural outgrowth of what is sometimes called
the mathematical sciences. However, as is true of much that is theoretical,
there is often little practical use for the results obtained in this area.

Programming is probably most strongly akin to engineering. By defi-
nition, engineering is an applied field. It is concerned with making struc-
tures, machines, products, systems, and processes useful to mankind. In
the computer field, the term “software engineering” is being increasingly
used to indicate that software development must be primarily concerned
with constructing useful tools. Such development requires using techniques,
methodologies, and previously constructed building blocks to build new,
improved, practical computer tools. Of course, the aspects that make en-
gineering software “applied” are many times at odds with art and science.
Certainly, the artist and scientist have a right to balk at any attempt to force
their work to be of practical value. However, they must also allow that their
work might be employed in a practical manner. And in many senses, so
much the better, if such application is appropriate.

Why, then, is the book not entitled An Introduction to Software Engi-
neering? First, the term “software engineering” has only recently been coined,
and is not yet well defined. Second, the texts currently available on software
engineering are written at the junior or senior computer science major
level, and therefore assume a significant background in computer science
topics. Third, there are a number of topics that are related to software
development but are only on the periphery of software engineering.

A fanciful subtitle for this book might be A Holistic Approach to Top-
Down, Bottom-Up, Modular, Structured, Human-Engineered Programming for
Teachers, Students, Small Business Users, Home Computerists, and Other Followers
of the Grail. Holism is defined by Webster’s Collegiate Dictionary as “a theory
that the universe . . . is correctly seen in terms of interacting wholes . . . that
are more than the mere sum of elementary particles.” Paraphrased, this
reduces to “the whole is greater than the sum of its parts.” The only problem
in applying the term holism to the computer field lies in its popular image
as somehow connoting mysticism or a Zen-like philosophy. This is unfor-
tunate because the term holism correctly used can help to describe a more
global approach to the complex subject of computer science, which is, at
best, a spaghetti bowl of seemingly unrelated topics.

The parts to be summed are the techniques used during the various
stages of software development. Each technique has its own unique set of
adherents. Yet what is usually ignored is that these techniques are not
mutually exclusive, but in fact can be complementary in the total devel-
opment effort. While you would not necessarily use every technique dis-
cussed while developing a particular piece of software, it is rarely made
clear, even to professional programmers, that it is perfectly all right to do
so. Because current books tend to deal, at most, with a couple of the topics
to be discussed here, it is nearly impossible for anyone other than a computer
scientist to find appropriate reference material for making life easier for
the software developer. In addition, what references are available typically
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require that the user have a background equivalent to a BS degree in
computer science in order to understand them.

This book is intended more for the “amateur,” the nonprofessional
programmer. This means that the reader’s primary responsibility is not to
write programs but is something such as managing, teaching, or home-
making. But just because these individuals are not professional program-
mers doesn’t mean that they won’t write programs that require sophisticated
techniques.

As a result of the explosion of the microcomputer market, enormous
amounts of raw computer power are in the hands of non—computer spe-
cialists. These “uninitiated souls” are encouraged, even enticed, to write
programs for their own use. However, the hardware manufacturers, soft-
ware vendors, and publishers have not provided adequate means for these
individuals to actually develop sound, quality, useful software. These nov-
ices are being led to believe that all they need to be concerned about is
learning how a few BASIC statements work, and the program will practically
write itself! It’s like teaching you how to bait the hook while ignoring the
details about how you actually catch a fish.

This book will play several important roles for the reader. First, it acts
as a primer to the various techniques available to help make life simpler as
a programmer. Second, it makes the reader a more knowledgeable con-
sumer of software by providing effective yardsticks by which to measure
other people’s products. Third, since in many ways the topics discussed are
“timeless” and are not in any way based on computer technology, this book
will serve as an excellent reference tool for many years to come.

As noted, this book is machine independent, and need not be applied
solely to the microcomputer field. The majority of the topics discussed are
as important to programmers using the largest mainframe systems. In fact,
several of the techniques have been “borrowed” from this environment,
and are heavily used by computer professionals. However, several of the
topics are more easily demonstrated assuming microcomputer-based Sys-
tems, and so it will be assumed that the reader will be comfortable in this
type of programming environment.

In addition, many of the examples, especially in chapters 3, 4, and 5,
will use BASIC. The format of the code will be as general as possible so
that the examples apply to most microcomputer systems available. However,
the code presented will be in Microsoft BASIC, making it directly applicable
to the IBM PC, the DEC Rainbow 100, and any CP/M-based system. There
will also be a great deal of compatibility with the Apple I1 line of computers.
While the details of how a particular technique is implemented in BASIC
differs from machine to machine, the fundamental concepts being applied
do not change. Therefore, users of other dialects of BASIC should be able
to apply the techniques in this book as well.

In addition, users of other programming languages such as Pascal or
COBOL should find this book helpful. In fact, much of this material may
be easier if you are using another language. This is especially true of Pascal,
since the design of the language directly incorporates many of the concepts
presented. The topics discussed are therefore largely both machine and
language independent.



Systems
Analysis

l 1.1 INTRODUCTION

The first impulse of most inexperienced programmers is to begin
writing code as soon as they have an idea for a program. This impulse
is stronger since the advent of microcomputers and interactive pro-
gramming, where the programmer can get immediate feedback from
the program. Indeed, one of the driving purposes behind the de-
velopment of BASIC was to create a programming language that
gave feedback as soon as possible during the programming process.

Unfortunately, bowing to this impulse leads to a trial-and-error
method of programming that increases the difficulty of the task
considerably. Only recently have “amateur” programmers, i.e., per-
sons whose main responsibility is not programming, begun to dis-
cover what professional programmers have known for many years:
the task of programming requires a disciplined, methodical, and well-
orchestrated technique in order to assure success.

Application programs are not created in isolation. It is first nec-
essary to recognize that the development of applications is driven by
the needs of potential users. In a large company, the typical scenario



SYSTEMS ANALYSIS
2

is that a user will discuss his needs with the computer support staff.
Once this discussion has taken place, the computer staff may define
and develop a new application. Next, programmers will implement
this application. Finally, the user will be set up with some procedure
for accessing it.

What Is a System?

The term “system” has several definitions in the computer field. First,
it can mean the hardware itself, as in “computer system.” The re-
lationship between the parts of this system is typically as simple as a
physical connection. In this sense, the computer and its peripherals
represent a system. Together, these individual pieces perform a col-
lective function.

The term “system” can also be used to refer to software, as a
synonym for “application program.” Its use in this sense is often
reserved for very complex programs, however.

A third meaning for the term, again referring to software, is
found in the reference to a “system of programs.” In this case, there
are individual programs that collectively accomplish some task, al-
though a user might not be able to easily distinguish the individual
programs within the system.

Finally, “system” can refer to a combination of hardware and
software that together perform a specific function. An example of
this is what is usually called a turn-key system, where the computer
is set up with a particular application that begins to execute as soon
as the computer is turned on. In this way computers are specialized
to run a particular application package.

The most general definition for “system” might be “a series of
interrelated elements that perform some activity, function, or op-
eration.” [96] In this case, there is no direct connection with computer
technology. Indeed, every office has a number of “systems” that
operate on human, not computer, power. A complete system might
even include some actions performed by people as well as by a com-
puter.

What Is a Systems Analyst?

Systems analysis is the study of the relationships and interactions
of the various components of systems. Considering the more general
definition of the term “system,” a systems analyst does not neces-
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sarily have anything to do with computers, as in the case where the
system being studied is entirely manual.

Why does a systems analyst study systems? What is the end result
of such analyses?

An early example of this type of work was the efficiency expert,
someone who would observe the functioning of an office or manu-
facturing environment in order to detect methods that were ineffi-
cient. The object of the analysis was to improve efficiency. This was
not, in itself, the final goal, however. The hope was that by increasing
the efficiency of the operation, there would be a related increase in
productivity. This increased productivity would result in a lower
overhead cost for the operation, either because the same operation
could be accomplished with fewer employees, or because the same
number of employees could produce more. The bottom line, thus,
was a higher profit.

Today, the term “systems analyst” is mainly associated with the
computer field. While the analyst may study systems that are essen-
tially manual, the purpose of such study is to determine whether the
system can or should be computerized. The ultimate goal is still the
same, increased productivity and thus profit. The operating theory
is that a computerized system is invariably faster, cheaper, and less
error-prone. While this is occasionally debatable, any system that can
be, usually is automated eventually.

The Analyst’s Role: Part 1

The analyst really has two main jobs. First, it is the analyst’s respon-
sibility to determine, in great detail, exactly how the present system
functions. This is seldom a quick or easy task. Many of the procedures
being followed by the various staff involved in an operation may not
be formally described in any document. “Oral tradition” still plays a
great role in how things get done in most companies.

Another problem is that the procedures may not be well under-
stood by those following them. They may not know why they do
things the way they do, only that “it’s the way things have always
been done.” But the analyst must discover the why for every step in
the operation so that its relative merit can be determined. It could
be that some steps are out-of-date or meaningless. It is difficult to
know whether a step is meaningless if you don’t know why it is being
done, however.



SYSTEMS ANALYSIS

4

Next, it may be difficult to discover what all of the steps in the
operation are, even if there is some documentation for the operation.
If a particular staff member is out of the office the day the analyst
interviews everyone, important details might be missed. It is even
possible that a necessary part of the overall system being studied is
not discussed with the analyst because it is not thought of as part of
the operation.

All'of these problems make the determination of how an existing
system works often the most difficult part of the analyst’s job. The
analyst must act more than a little like an investigative reporter,
ferreting out important information from the most unlikely places.
Only after all of the procedures for the present system are under-
stood and described in detail can any attempt be made to computerize
the system.

There are three main ways that the analyst gathers pertinent
information. First, any documentation that exists for the current
system must be studied in detail. This includes any manuals describ-
ing procedures, tables that describe how certain mechanisms work,
examples of all forms used in every step (no matter how infre-
quently), and any “crib sheets” that individuals may have prepared
for their own portion of the system.

Second, the analyst must interview every employee who has a
significant role in the operation of the current system. Exactly what
“significant” means is often difficult to pinpoint. The safe bet is to
interview everyone involved, but this could be extremely time-
consuming. Where the system involved is very large, very complex,
or involves many personnel, it is often necessary to have a team of
analysts.

Interviewing so that the maximum amount of information is
gained in the minimum amount of time is not an easy procedure.
How a question is posed can be as important as the question itself.
And since the analyst is dealing with people, not all of whom are
going to necessarily be completely cooperative, the analyst must be
able to handle the intricacies of human interactions. This is many
times the most difficult part of the entire procedure. (The reader is
referred to the Bibliography for further information on the various
methods for formal interviewing.)

The final information gathering method employed by the analyst
is observation. Many times, the analyst can more easily determine
what is being done by simply observing the various procedures in
progress than by any other means. While it is difficult to be certain
that some subtle actions are not missed by the analyst using this
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method, direct observation is still a useful tool for verifying infor-
mation obtained in other ways, if nothing else.

The analyst is collecting information about the system in an at-
tempt to answer five short, but deep, questions:

. What is currently being done?

Why is it being done?

Who is doing it?

. How is it being done?

What are the problems involved in the current method?

O QO N =

Once these questions have been answered in detail, a description of
the current system emerges. It is this description that will form the
basis for any computer application that is to replace the current
system.

The Analyst’s Role: Part 2

The second part of the analyst’s job is to describe a computerized
replacement for the current system. This is the part that is most
often associated with a systems analyst, since it deals more directly
with computer applications.

The analyst has several tasks at this stage. First, the analyst must
prepare a description of the new computer application based upon
the description of the current system just analyzed. This begins as
an effort to describe how the new application will resolve the prob-
lems associated with the current system. In addition, however, the
new application should take advantage of new ways of accomplishing
the tasks at hand, even to the point of changing the procedures of
the system significantly. The analyst must recognize these oppor-
tunities to improve the system.

The analyst will also begin describing the system as a series of
sub-tasks to be accomplished in some order. This was perhaps already
done to an extent in the original system because multiple personnel
were involved, each with his or her own procedures to follow. The
analyst must now define logical sub-tasks that a computer can follow,
perhaps regrouping those originally present.

The analyst’s next responsibility is to anticipate the automation
of the task. This creates two main concerns. First, since the way in
which data is maintained and handled can greatly influence how
efficient a system is, and because the ultimate goal of any system is
to maintain and produce data in various forms, the analyst must be
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aware of what organization of the system’s data would be most ap-
propriate and effective.

Second, the analyst must anticipate what problems the comput-
erization of the system might cause. Perhaps certain procedures in
the system are time-sensitive. For instance, it occasionally creates a
problem when a computerized application performs certain steps of
a procedure too quickly. A delay introduced because of the inherent
time it takes for a human clerk to enter an order into an order book
may be essential for the maintenance of a proper inventory level.
Speeding up the ordering process by computerizing it may cause the
inventory to be suddenly depleted.

The final responsibility of the analyst is to act as a communica-
tions link between the technology and the end users, who typically
know little about computers. As a liaison, the analyst helps the user
to understand the new application. In addition, the analyst acts as
the user’s advocate with the computer department. He or she helps
users to explain their needs and protects the user’s interests during
the formulation of a new application. A user should not have to
accept an awkward procedure simply because the computer staff
wants to implement an application in a certain way.

Applications from Scratch

It often occurs that someone gets an idea for a computer application
that has never existed as a manual system in any significant sense.
For instance, imagine getting an idea for a new computer game.
Since the initial description of the new application is typically based
on the analysis of some system currently being used, how does one
begin to describe such an application?

Since there is no current system, the initial analysis phase that
was described above is obviously impossible. However, you want to
end up with the same type of system that you would have if the
analysis were possible. This is accomplished by trying to answer the
same questions that you would answer if the system had actually
existed already. This requires a lot of imagination and a certain
amount of trial and error until the description you arrive at is sat-

isfying.

The System Life Cycle

A system life cycle is the set of steps required to take a computer
application from conception to finished product, whether the project
1s a single program or a very large system of intricately intercon-
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nected programs. Unfortunately, there is no accepted standard for
defining the life cycle of a programming project. This is no different
from there being no standard method of company management.
The life cycle is a method for managing the programming project.
Since the requirements of individual projects can differ widely, the
details of the life cycle can also ditfer.

Many life cycles include elaborate schemes for including feasi-
bility studies, formal proposals, and detailed reviews. While these
steps are often necessary when dealing with a large corporation or
major project, they are seldom required for the amateur program-
mer. As a result, these additional steps will be ignored in the system
life cycle defined here.

Definition Phase

The place to start with all projects of this sort is at the definition
phase. This phase, like the others that will be discussed, can be as
elaborate or as informal as you wish. For personal projects, I typically
try to hit a middle ground between the two extremes.

In this phase, we are concerned with defining what the appli-
cation is. As discussed above, this includes the general analysis of a
system. This phase also includes the preliminary design.

The object of the preliminary design is to provide a general
outline for the system design. It is best to leave until later as many
details as possible about how a system is going to perform its functions.
As will be seen, this promotes many sound habits that will improve
the quality of the programs you develop. The preliminary design
portion of the definition phase overlaps a bit with the design phase.
This results from the methods used in analyzing a system, which can
contribute a great deal to the preliminary design. The term “prelim-
inary design” encompasses these tools in much of the literature, since
the term is used informally in the computer field.

Design Phase

The detailed design of a system is a more specific design description
of the program’s logic and functional components. While still avoid-
ing issues related to a specific machine or programming language,
this phase is the first presentation of how the program will perform
its functions. However, this is still a general description in outline
form. This allows the logic of the program to be mapped out without
a commitment to a specific machine or programming language,
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making it possible to develop the program for many different com-
puters or in many different languages without starting from scratch
every time. Even when this is not a specific goal for a project, it is
still a vital step in the life cycle of any program.

This design phase is much like the development of an architect’s
blueprints. The preliminary design corresponds to the first rough
sketches and models that an architect makes. Eventually, these sketches
are drawn in some final form, which corresponds to the general
description of the program. Next, the blueprints are developed from
the architect’s drawings.

It is these blueprints that make constructing a building truly
possible. No construction person in his right mind would begin to
put up a building without such blueprints. They describe in detail
how the building is to be constructed. The architect’s job is to see
that the building adheres to sound architectural practices, taking into
account the physics behind materials and construction techniques.
In a similar way, a systems analyst prepares a detailed design of a
program, adhering to sound programming practices.

Implementation Phase

After the program has been fully designed, the implementation phase
begins. It is finally time to become concerned with all the machine
and language details that have been avoided so scrupulously thus
far. During this phase, the design is turned into code.

If the design was well developed, this phase is somewhat me-
chanical. In most larger companies, it is at this point that the project
is turned over to a programmer by the analyst. Some companies do
this during the previous phase, prior to the detailed design. Exactly
when this is done is usually a matter of company policy, often de-
pending on the exact nature of the life cycle the company follows.

Verification Phase

Once the program has been coded, it is necessary to evaluate how
well it performs. This verification phase is often the most difficult
and time-consuming step, since it is here that errors must be found
and corrected. Many times these bugs, as they are known in computer
parlance, are quite difficult to detect.

While this phase is usually thought of as following the imple-
mentation phase, it really comes into play after both the design and
implementation phases. One purpose for doing the design in a gen-
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eral form is so that it can be evaluated. This evaluation includes some
preliminary testing for errors, as well as a verification by the potential
users that the system being developed will meet their needs. This is
not always straightforward or simple, but such a verification can
increase the quality of a product immensely, not to mention creating
contented users.

Documentation Phase

Once the system has been fully implemented, it still cannot be re-
leased for use until detailed documents are created that explain how
to use the system. This documentation phase is similar to the veri-
fication phase, in that documentation is ideally prepared at several
points during the life cycle, not only at the end.

This phase is usually the most dreaded by programmers, for
several reasons. First, there is a general fear of writing among pro-
grammers, which is somewhat odd considering how akin to creative
writing the development of programs really is. Second, writing doc-
umentation obviously is not as much fun as writing code. Third, and
perhaps in many ways most important, company management usu-
ally places little emphasis on documentation. The biggest hazard of
leaving the documentation task to the end is that the programmer’s
manager will give the programmer a new assignment as soon as the
previous project passes the verification phase. This leaves the pro-
grammer little time to create the necessary documentation. As a
result of these problems, most systems are vastly under-documented.

Production and Maintenance Phase

The last phase has two parts. A program enters production phase
when it is finally made available to users for real work. There is little
that the programmer needs to do during this phase for a production
system that is working well. For larger systems, it is sometimes the
programmer’s responsibility to set up special executions of the pro-
gram, such as at the end of a predetermined period or at year’s end.

The maintenance phase overlaps with the production phase. The
real task of a programmer during this time is to monitor the pro-
gram’s use. Changes (i.e., maintenance) will have to be made to the
system on occasion. There are two main reasons for this. First, the
requirements of the user may change. This may mean adding, de-
leting, or changing functions in the program to suit the users’ new
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requirements. Second, bugs are invariably discovered (usually by the
user). Such errors must be diagnosed and corrected. The system
must then be retested. Once this has been done, the new version of
the system can replace the current version in production.

I 1.2 DEFINING THE APPLICATION

While, in many ways, creating a general description of an application
is the easiest step of the entire process, it is also one of the most
important. If the original description is poorly prepared or wrong,
the deficiency will quickly become embedded in the system. If such
an error is not discovered until several steps later, it is vastly more
difficult to correct. As a result, most professionals spend what may
seem like an inordinate amount of time getting the general descrip-
tion right.

This i1s accomplished through an iterative refinement process.
During this process, the analyst will make presentations about the
definition of the system to the users who requested the application.
Although most technical details about a computerized system will be
beyond the users, such briefings are used to look for misunderstand-
ings of the users’ needs. In addition, these walk-throughs familiarize
users with new ways to accomplish old tasks using the computerized
system.

The users may not like or understand everything that the analyst
presents. This usually requires the analyst to redefine portions of
the system. After such a redefinition, another meeting of the analyst
and users provides a new opportunity to review the system definition.
This cycle continues until both the analyst and the users agree with
the definition. Such an agreement does not always come easily, how-
ever. Both sides must be willing to compromise occasionally in order
to get the project into the development phase. Since most profes-
sional projects are bound by both budget and time constraints, such
compromises can be quite important.

In this section, the four main parts of an application’s formal
definition will be examined. First, the results of the analysis of any
currently used system must be reviewed. Second, the general descrip-
tion of an application will be discussed. While this may initially be
based upon the analysis of a current system, this does not necessarily
have to be the case. The description could be a heavily modified
form of the current system. As mentioned earlier, it could also be



DEFINING THE APPLICATION

11

the case that there is no system currently being used, or that the one
being used is so primitive as to not provide a solid base for a new
application. In such an event, the description will have to be based
upon an imaginary system.

Third, it is extremely useful to describe what the expected inputs
to the system will be. By describing these inputs, we have the begin-
ning point of the system. In addition, we can determine how this
application might connect with other programs or systems. For m-
stance, one of the inputs to this application might have been an
output from some other system.

Finally, we should describe the set of outputs that the system will
generate. This defines the final goal of the application. In this way,
we have a firm target in front of us as we continue to develop the
application.

Note, however, that we have not in any way indicated how the
inputs will be transformed into outputs. This level of detail is pre-
mature and would only divert our attention from the need to arrive
at a comprehensive description of what the application is supposed
to do.

Analysis of the Current System

In the introduction to this chapter, we looked at the role of a systems
analyst. When studying an existing system in preparation for its
computerization, the analyst must discover exactly how the current
system operates. In addition, he or she must look for the weaknesses
of such a system. Finally, in proposing a computerized system, he or
she must develop ways to overcome the weaknesses that have been
discovered.

Usually the weaknesses are somewhat obvious and are what
prompted the analysis in the first place. The two most obvious weak-
nesses in systems are that they take too long to perform their func-
tion, or that they cost too much. The difficulty in systems analysis is
that often what appears to be a flaw of the system is only a symptom
of a more subtle problem. For instance, both of the previously men-
tioned problems could be a result of a high rate ot errors. In a
manufacturing system, for example, this would be evident from a
large number of low-quality parts being manufactured. So what started
out as a problem of high overhead turns out to be one of quality
control.
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An Example

People learn best by doing, so let’s look at an example that is well-
known yet confuses a very large percentage of the population on a
monthly basis—balancing the family checkbook. We’ll look at the
entire system of which the checkbook itself is but a small part. The
application we have in mind, however, is one that will make balancing
the monthly bank statement much more painless. We will carry this
example through some of the other sections of this chapter as well.

First, even if this application is being developed for your own
use, you must proceed as if it were for someone else. It is also helpful
later on to approach the subject being analyzed as if you knew noth-
ing about it. You should write down every procedure in detail, no
matter how trivial it seems. Make as few assumptions as possible, and
avoid the temptation to say to yourself, “I don’t need to write that
down; it’s obvious.” You can become quickly overwhelmed with all
the details that need attention in even the smallest system, so leave
nothing to chance and write it all down.

For this application, start by asking yourself questions about how
the present system works. This should lead you to a set of procedures
that help define the system. For the checkbook system, you might
start with the following steps:

1. You write a check and send it to your creditor.

2. Your creditor receives the check, and deposits it in his or her
bank account.

3. Your creditor’s bank contacts your bank and arranges a transfer
of funds, which will be added to your creditor’s account.

4. Your bank deducts the amount of the check from your account
and transfers that amount to your creditor’s bank.

5. Atthe end of each month, your bank returns to you all the checks
cashed since the last statement. It also includes a statement for
your account, listing various details about your account, includ-
ing what the bank considers to be your current balance.

At this point, you are supposed to take the statement provided
by the bank and “balance” your checkbook. This balancing is actually
a process to determine whether or not either you or the bank has
made an error in keeping the books on your account. Since the bank
uses a highly sophisticated computer system, it is usually safe to
assume that any mistakes were made by the bank customer.

Before looking at the procedure used to balance the monthly
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statement, let’s first examine what types of errors might have been
made by the “user.” The most obvious errors are of the simple arith-
metic type. These are primarily simple subtraction or addition errors,
but can also occur if a check value is added to the current balance
instead of subtracted. Still other, more subtle errors occur when the
wrong value is entered into the check journal. While the arithmetic
may be correct, the result is still wrong since the values being added
or subtracted are wrong. Finally, errors of omission occur when the
user forgets to write a check into the journal.

These weaknesses may form the base of our new application. In
other words, we would like our new computerized checkbook system
to help overcome these deficiencies in the current system. It is not
clear how this objective will be met, but such a revelation is not yet
necessary.

Next, let’s look at the various forms that need to be dealt with
in a checking account. The three main forms are the check itself,
the check register, and the monthly statement from the bank.

The check is of little use to us once it has been cashed. Some
banks have even stopped returning canceled checks each month,
preferring instead to keep a copy of each check on microfilm at the
bank. However, in cases of a dispute with the bank or a company
about proper payment, the canceled check is still the easiest method
of resolving the issue.

The information on a typical check tells to whom the check was
written, the amount of the check, the date it was issued, and the
signature of the check writer. In addition, most checks provide a
blank space that can be used to indicate what the check was written
for. Using this space is strictly voluntary, however, while all the other
information is required in order to make the check legal. Unfortu-
nately, since use of the space is voluntary, most people don’t bother
with it, even though it could provide useful information later, for
mnstance, at tax time.

One other piece of information that can usually be acquired from
a canceled check is the date it was cashed. This is usually stamped
on either the front or the back of the check. In fact, this stamp is
the only proof that the check has indeed been cashed. While not a
vital piece of information, it again has its uses.

Finally, each check has a unique check number. This is vital, in
that it is the only way that the bank tells checks apart.

The check register is what the account holder uses to keep track
of the account on a day-to-day basis. Each time a check is written,
the check writer is supposed to enter certain information into the
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register. This information generally includes the check number, the
date the check was written, to whom the check was written, and the
amount of the check. The account holder is supposed to keep a
running balance by subtracting the amount of the check from the
previous balance, yielding a new running balance. This running bal-
ance is not an indication of how much money is in the bank account
at the moment the check was written, since checks written previously
and already subtracted in the register may not actually have been
cashed yet. It is instead an indication of the remaining resources of
the account that can be drawn upon without “overdrawing” the ac-
count.

In addition to check information, any deposits made to the ac-
count are noted in the register. The amount of the deposit is then
added to the running balance. The only other information normally
kept for deposits is the date of the deposit.

Finally, the monthly statement can vary greatly from bank to
bank. It generally includes a list of all checks cashed since last month’s
statement. This list is usually arranged by date instead of by check
number. In addition, a running daily balance for the account is given.
This is the actual amount that the bank claims is in the account each
day during the statement period. This will seldom jibe with any
amount you list in your check register, however. This is because there
are usually a number of “outstanding” checks, i.e., checks not yet
cashed.

To balance the checkbook, you generally do the following:

1. Add up the values of all the outstanding checks.

2. Add up the values of all the deposits made after the ending date
of the statement, i.e., any deposits you made that did not show
up on the current or previous statements.

3. Take the final daily balance given on the statement, subtract the
total of the outstanding checks, then add the total of the out-
standing deposits. The result should equal the last balance written
in your check register.

This procedure is fairly straightforward. It requires doing only
simple arithmetic. Yet there are probably very few checkbooks in
this country that are “balanced.” Why? And how do we tell if a
checkbook isn’t balanced?

In step three above, we indicated that the result should equal the
last balance written in the check register. If it does, then the check-
book is balanced, i.e., the bank thinks you have as much money in
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the account as you do. If the values are not the same, however, there
is a problem. But what kind of problem?

As noted earlier, there are a number of possible sources of error.
To make matters worse, there may have been more than one mistake
made. This can greatly complicate the search.

Since the purpose of this entire exercise is to indicate whether
or not an error has been made in keeping the checkbook (i.e., in the
account holder’s keeping of the check register), it is important to
enumerate as much as is practical all the possible errors that might
have occurred.

There could be three sources of error in this system. First, the
values in the check register could be wrong. Second, the procedure
for balancing the checkbook could have been done improperly. Fi-
nally, although the possibility is quite remote, the bank could have
made an error on the monthly statement.

We have already outlined, on page 13, various possibilities for
errors made in the check register. The following errors could have
been made during the balancing procedure:

1. Values for outstanding checks or deposits could have been in-
correctly copied.

2. A check that was counted as outstanding is not, in fact, outstand-
ing.

3. A check that really is outstanding was overlooked and, therefore,
was not added into the outstanding check total.

4. A deposit that was counted as outstanding is not, in fact, out-
standing.

5. A deposit that really is outstanding was overlooked and, there-
fore, was not added into the outstanding deposit total.

6. The value for the bank’s last daily balance was copied incorrectly.

7. The totalling of the outstanding checks was done incorrectly.

8. The totalling of the outstanding deposits was done incorrectly.

9. The final computation was performed incorrectly.

This summarizes the procedure of balancing the checkbook pretty
well, right? It seems to cover all the essential details of the mechanism.
The description even includes lists of where things might go wrong
in the system, which could lead to a description of the purpose for
a computerized application.

The next step in this analysis is to make certain that every term
that has been used is easily defined and completely understood. Most
items, such as “check amount” and “final daily balance,” are self-
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explanatory or are readily identified by the forms being used. What's
missing?

What is the definition of an outstanding check? Earlier, we used
a loose definition related to whether or not the check had been
cashed. However, this presupposes that we are in some way keeping
track of which checks have been cashed. It is necessary to have a
specific mechanism for this, since there is no way to determine the
order in which checks will be cashed, or how quickly or slowly they
will be cashed. Some checks will be cashed the day they are written,
while others may not be cashed for six months or more. Any check
that has not been cashed, not just those written in the last month
and not cashed, must be considered as outstanding.

The check register typically has an additional field for keeping
track of outstanding checks. When a check has been cashed, as evi-
denced by the check being returned by the bank, this field is marked.
Any check that is not marked this way is currently outstanding. Out-
standing deposits are handled in a similar fashion.

This adds to the list of errors that might be made as follows:

1. A check that should not have been marked as cashed was, in fact,

marked.

A check that should have been marked as cashed was not marked.

A check that was marked as cashed was incorrectly added into

the list of outstanding checks.

4. A check that was not marked was omitted from the list of out-
standing checks.

© 1o

A similar list of errors would apply to deposits.

The Application Description

The particular application that will be developed based upon the
above analysis 1s entirely dependent on the goals of the user(s). In
this example, there is a wide range of possible applications that could
now be described, from the nearly trivial to the quite complex.

A TRIVIAL APPLICATION A significant portion of errors made
in the balancing procedure are simple arithmetic errors made during
the totalling of outstanding checks and deposits and the final com-
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putation of the balance. A user might ask for a program that will
help eliminate these errors. The program might be described as
follows:

Checkbook Program 1:

The program will assist a user in balancing his or her checkbook. The
program will add up the list of outstanding checks and the list of outstanding
deposits, which will be provided by the user. After the program is given
the final balance listed in the monthly bank statement by the user, it will
output a number that should correspond to the final balance listed in the
user’s check register. If the amounts are equal, then the checkbook register
is correct, and the account is “balanced.” If the amounts are not equal, there
may be an error in the check register. The user must locate and correct
the error, and then run this program again to balance the checkbook.

This description is, perhaps, overly specific, in that it gets un-
comfortably close to describing details about how the program should
work. Details about possible inputs, outputs, and decisions that the
program will make should be avoided at this stage as much as pos-
sible. However, as we will discuss in the next section, it is often
necessary to be somewhat specific at this stage since the user must
sometimes tell how something is to be done in order to describe what
must be done.

As long as the description is kept as general as possible, there is
no harm in this. Note, for instance, that the description does not
give information on how the new balance is to be calculated. This
was left out intentionally.

The goal of this program is to produce a value that can be com-
pared to the last balance in the check register in order to determine
if an error was made in the register. A completely general description
might present this information alone, leaving the other details of the
inputs and outputs until later. For instance:

This program will help a user balance his or her checkbook. With the proper
inputs, the program will produce a value that can be compared with the
last entry in the user’s check register to determine whether or not the
checkbook is balanced.

This description can be fleshed out once the details of the im-
plementation are known. However, it summarizes the purpose of
the program adequately.
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A MORE COMPLEX APPLICATION Although simple arith-
metic errors are perhaps the most common ones committed while
balancing a checkbook, other errors can make the balancing pro-
cedure even more time-consuming. The second most common error
has to do with what checks and deposits are listed as outstanding.
Looking for outstanding checks can be quite difficult when dealing
with more than one check register, or with checks that have not been
cashed for many months. In addition to the elimination of the simple
arithmetic errors, a computerized application could help to eliminate
these additional errors by keeping track of the checks themselves.

Checkbook Program 2:

The program will help the user to maintain his or her checkbook and to
balance the checkbook automatically at the end of each month. The pro-
gram will keep track of all checks and deposits of the account. With this
information, each month’s bank statement can be balanced simply by en-
tering the final daily balance listed on the statement. The program will
generate a new balance, which is then compared to the final balance in the
user’s check register. If these values are the same, then the checkbook is
balanced. If the values are not the same, then the user has made a mistake
in entering information about the checks or deposits.

It should be obvious that this application calls for a much more
sophisticated method of keeping track of checks and deposits than
the previous example did. The implication is that the program will
keep track of checks and deposits in a way that is similar to the check
register, since the program must be able to identify outstanding
checks and deposits in order to generate the new balance correctly.
This is certainly not a trivial matter, and will require sophisticated
use of files. This is implied from the need of the program to keep
track of every check and deposit, from the very beginning of the account.
Such a large amount of information can only be stored in a file.

In addition, what if the user makes a mistake in entering a check’s
information? It was mentioned in the program description that this
is the only type of error that might still occur with this system. Some
mechanism must be created in the program for changing the infor-
mation entered for checks and deposits. This is also implied by the
need to change a check’s status from outstanding to cashed. In the
check register this is done by placing a mark next to the check when
it has been returned by the bank. This information must also be
available to the program.

Finally, it should be noted that this program does not entirely
eliminate the type of error that it was supposed to. It is still possible
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for the user to incorrectly mark a check as cashed, resulting in an
incorrect new balance. In addition, it does nothing to eliminate an
error in a check’s amount once entered into the system. For this
application, there is some question whether the time spent entering
the information from the checks and deposits does not outweigh any
time savings from the balancing function of the program.

A SOPHISTICATED APPLICATION Even if the application
described as Checkbook Program 2 is not worth doing because it
doesn’t really save the user any time or increase the accuracy of the
procedure significantly, there may be another reason to go to such
great lengths in a checkbook system. In addition to its function as a
checkbook balancer, such a system could form the foundation of a
sophisticated record-keeping system, which could be useful in or-
ganizing the information for other purposes. For example, if the
checks were categorized by their purpose, such as medical expenses,
office expenses, etc., the system could generate reports that would
simplify the annual chore of filing taxes.

Checkbook Program 3:

This program will be a complete bookkeeping system. It will keep track of
all checks written and deposits made by the user. The program will then
balance the user’s checkbook each month. In addition, the program will
provide annual reports for the user, which will list checks that can be de-
ducted in each deductible category for filing federal taxes.

As in the previous program description, this description implies
a sophisticated file system. The program must keep track of all checks
and deposits as in the previous system. In addition, it must keep
track of which tax category each check is in. This information must
initially be provided by the user. The program will then be able to
use this categorization to produce annual summary reports for pre-
paring taxes.

An application could even be carried one step further by includ-
ing a program that would help the user to fill out a standard set of
tax forms, based upon the information kept by the above application
and some additional information provided by the user (such as gross
income). It should be obvious by now that the functions of an ap-
plication can quickly escalate into a very complex system. The best
approach 1s to start out with the most minimal program that will
perform the function needed. Additional functions can be added as
time permits, and the application can be built up gradually to become
a very sophisticated system.
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Inputs and Outputs

You probably noticed that many of the descriptions given above dealt
with inputs and outputs. This is impossible to avoid, since a program’s
goals are identified by its outputs, and the outputs cannot be gen-
erated without some idea of what the inputs are.

The outputs a program should generate form a target for the
development of a program. Think of the computer and its software
as a black box. A black box is a box that cannot be opened by the
user. It accepts a certain type of input, and generates a predefined
type of output. An example of a black box might be a television.
The input might be signals received on an antenna. The output is
the picture that the user sees. The user does not need to know how
the insides of a television work, but must only know that certain
buttons on the set, such as the channel selector, control what is seen.

A user wants a black box that will perform the task he or she
needs done. When explaining his or her needs to an analyst, the user
will usually say something like, “I want a black box that will do this.”
For each user, this is a description of the results the user expects
from the black box. For instance, the user might say, “I want a black
box that will help me balance my checkbook by doing the calculations
for me.” Another might say, “I want a black box that will calculate
the standard deviation of a set of numbers.” A third might say, “I
want a black box that will help me fill out my tax forms.” In the
professional programming world, the most often heard request is “I
want a black box that gives a report that tells me this,” where this is
some arcane statistic.

The only thing that the user really knows about the black box is
what the results from it will be. These expected results form the goals
for the program that will create the user’s black box using a computer.

Therefore, it is usually natural to begin describing a program by
what the expected outputs will be. This might include isolated values,
such as the checkbook balancer’s new balance, or complex reports,
such as in the tax system. If the manual system generates specific
forms and reports, chances are the new application will need to
generate these same forms and reports in some fashion.

Once a general description of the expected outputs has been
established, it is usually necessary to begin describing what inputs
will be needed to generate those outputs. At this point, the exact
nature and format of the inputs is not important. Just knowing that
the system must keep track of checks is sufficient.

It is not necessary to describe all inputs or outputs now. The
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general description will provide a gross image of the target and the
beginning point. The design developed in the next phase describes
the details of how the imputs will be converted into the expected
outputs.

Example 1: A Carpet Store Estimator

A friend who owns a carpet store comes to you one day with a
problem he would like you to resolve. It seems that his salespeople
are having difficulties preparing quick, accurate estimates for their
customers. His request is prompted by two things. First, estimates
prepared by the sales staff are prone to simple arithmetic errors,
since the calculation of the total cost to carpet a room requires con-
verting room dimensions given in feet to square yards, in addition
to multiplying and adding many factors. Even though the salespeople
use calculators, they make too many mistakes.

The second problem is that the store has enjoyed a tremendous
growth lately, and the salespeople have many customers waiting for
estimates. Can a computer system help make the estimation proce-
dure quicker so that no additional staff have to be hired?

You start your analysis by asking your friend to describe the
procedure a salesperson currently uses to provide a customer with
an estimate. He gives the following explanation:

“The customer gives the salesperson the dimensions of the room
to be carpeted. The length and width are given in feet. The sales-
person writes these dimensions down on a customer estimate form.
Since we only sell carpet by the even yard, these dimensions must
be rounded up to the next even foot that is divisible by 3. For ex-
ample, a room that is 10 feet, 6 inches long by 13 feet, 10 inches
wide is converted to 12 feet by 15 feet.

“Next, these dimensions are multiplied to give the area of the
room in square feet. This number is then divided by 9 to give the
area of the room in square yards. This area is also written on the
form. The customer then tells the salesperson the cost of the carpet
the customer would like to install. This cost per square yard is mul-
tiplied by the area of the room in square yards to arrive at the total
cost of the selected carpet for that room. This final result is written
on the form, which is then given to the customer.”

You then request a copy of the customer estimate form. This is
shown in Figure 1.2-1. Note that it allows for estimates to be given
for several rooms on the same sheet, in case the same customer has
more than one room to carpet.
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Date:
Customer Name:
Salesperson Name:
Room Room Total Carpet Cost per Padding Install.
Width Length Sq. Yds. Code Sq. Yds. Cost Cost Total
1.
2.
3.
4.
5.
6.
7.
Net: §
Tax: §
Total: §
FIGURE 1.2-1: A customer estimate form for a carpet store.

The main function of the program your friend needs is to gen-
erate this form for the customer. The general description of the
system is now fairly easy to create:

This system will generate an estimate for carpeting up to seven rooms. The
program will be operated either by a salesperson or by the customer. The
customer will provide the dimensions of all rooms to be carpeted, along
with the per-square-yard cost of the carpet selected for each room. The
program will then generate a report that summarizes the total cost of carpet
for each room, and the total cost of carpet for all rooms combined.

This description calls for a system that will exactly mimic the
function that has been performed by a salesperson in providing an
estimate. However, it is perfectly reasonable to assume that this pro-
cedure could be enhanced to provide additional services to the user,
or to take other factors into account when producing the customer’s
estimate. An example might be adding in the cost of padding and/
or installation, if the customer wants these.
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Example 2: A Carpet Store System

Some time later, you run into your friend with the carpet store and
you ask him how the new computerized estimate system is working.
He says that it has been a great success, and he would like to com-
puterize more of his operation. So you must again analyze his current
operations, including his record-keeping setup. From further ques-
tioning, you learn the following:

The computerized customer estimate is used as a basis for filling out an
official salesperson estimate form (shown in Figure 1.2-2). This form gives
additional details, and is later used to place an actual carpet order. It also
includes the cost of padding and/or installation, as well as discounts the
customer is entitled to.

Discounts are calculated based upon a formula that takes into account
certain factors, such as the customer’s purchasing history over the last year.
The following discount is applied based on the amount of the current order:
for an order less than $2000, no discount; for an order greater than or
equal to $2000, but less than $5000, a 5% discount is given; for an order
greater than or equal to $5000, but less than $10,000, a 7% discount; for
an order greater than or equal to $10,.°%, a 10% discount. In addition, a
regular customer (any customer who has purchased more than $7500 worth
of goods in the last 365 days) receives an extra 5% discount. Credit orders
are not eligible for a discount, except for regular customers.

This salesperson estimate is kept in a current estimates file for thirty
days, during which the customer can order the items on the estimate at the
guaranteed price given. If the customer does not order anything from that
estimate within thirty days, the estimate is removed from the file and dis-
carded. If the customer does wish to order any item(s) from the estimate,
the estimate is removed from the estimate file and additional information,
such as the installation address, is taken. Finally, the total is recomputed.
This is done because it could aftect the amount of the discount the customer
may receive. In addition, the current per-square-yard cost of a carpet is
used whenever this is less than the cost listed on the estimate, such as when
the carpet goes on sale after the estimate was made. In other words, the
customer is always guaranteed the lowest price on a carpet.

Finally, the estimate form (now called the order form) is placed in the
order file. This order form will be used for scheduling delivery and in-
stallation.

All orders are net thirty days unless credit has been approved. In ad-
dition, a regular customer’s order is immediately scheduled for delivery
and installation. A non-regular customer must wait until credit has been
approved before delivery and installation are scheduled.

The above provides the necessary information to create a general
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Billing Name: Order #
Company Contact: Date:
Phone:
Billing Installation
Street:
City:
State, Zip:
Room Room Total Carpet Cost per Padding Install.
Width Length Sq. Yds. Code Sq. Yds. Cost Cost Total
1.
2.
3.
4.
5.
6.
7.
Net: §
Discount: $
Subtotal: § -
Tax: $
Total: §

FIGURE 1.2-2:

The official salesperson estimate form, which includes additional information
about the customer and calculates discounts.

description for a system that will computerize the carpet store order
system. There are some human dynamics that must be taken into
account, however, before a final description will be useful in the
preliminary design phase. In addition, there are certain pitfalls that
must be avoided when converting this system to a computer.

First, who is doing what in the system described above? It appears
that the customer is responsible for generating a preliminary estimate
using the previously created customer estimate program. This is then
taken to a salesperson who will create the salesperson estimate. The
form generated from this action is next given to someone (maybe a
secretary) who adds it to the estimate file. When a customer later
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wants to place an order, the secretary must retrieve the estimate
form from the estimate file and return it to the salesperson who
completes the necessary information to generate the order form.
This order form is given to the secretary who places it in the order
file. The orders in the file are then used by the delivery and instal-
lation crews to perform their functions. Finally, it is the secretary’s
job to purge the estimate file of estimates older than thirty days.

A first approach to designing a new system might be simply to
convert the manual system into one that uses a computer to keep
track of the various forms and to perform any necessary calculations.
Thus, the estimate file and the order file could be envisioned as
separate computer files stored on disk, instead of file folders in a
filing cabinet. Additional files might be required to store other in-
formation, but this can be considered later.

[t is certainly easy to create a system that will allow a user to enter
the information needed for the estimate and order forms. This is
already done to a certain extent in the original customer estimate
program. An entry, verification, and report output program is fairly
simple to create. Such a program could easily handle the calculations
needed, given access to information such as a discount schedule or
a cost table for different carpets.

In addition a computerized system would certainly eliminate the
difficult aspects of this procedure, such as the calculations. It could
also save the cost and difficulties of dealing with the special forms
that are used. For instance, if an order form is returned to the
estimate file instead of placed into the order file where it belongs,
this will cause an error (namely that the carpet won’t be delivered
because the delivery person can’t find the order form). Finally, such
a system could eliminate the functions performed by the secretary,
giving the secretary more time to do other things.

However, such a system can also create problems if not designed
properly. In this case, consider how each of the functions is per-
formed and by whom. Imagine a single computer with appropriate
software to perform the functions outlined above. Is it a good idea
for the customers to use the same machine as the salespeople in
preparing estimates? How will the machine know which function it
is to perform at any time? What happens when more than one sales-
person needs to prepare an estimate at the same time? How do the
delivery and installation crews access the order file for the infor-
mation they need?

Some of these questions are easier to answer than others. For
instance, when an order is taken, the customer must be given some
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record of the transaction. If a copy of the order form is printed, this
can be not only used as a receipt, but a second copy can be used to
inform the delivery and installation crews of the order.

In terms of the customer’s unofficial estimate and the salesper-
son’s official estimate, it does not make sense for the customers and
salespeople to be competing for the same system. Since there is only
a minimal connection between the customer’s estimate and the
salesperson’s estimate (the room dimensions and the cost of the car-
pet), this information can easily be reentered by the salesperson when
creating the official estimate. As a result, these two estimates can be
separated entirely from one another and can be placed in different
machines. Perhaps a machine can be placed in the middle of the
store for use only by customers to get an informal estimate. This
machine would run only the program that has already been imple-
mented for the store (as defined in Example 1, page 21).

The salespeople present a ditferent problem. The length of time
that a customer will have to wait for an official estimate depends on
two things: the time it takes to input the necessary information and
generate the form, and the number of other salespeople waiting
ahead of his or her salesperson to prepare an official estimate. In a
situation where there are only two salespeople and it takes only three
minutes to complete the estimate, a single system for use by both
salespeople is perhaps a reasonable approach unless there are always
many customers waiting for service. But if it takes significantly longer
to prepare an estimate, or if there are many more salespeople, then
another method must be used or the customers will find the wait
intolerable. This could cost the store customers in the long run.

A simplistic approach would be to give each salesperson his or
her own computer with the exact same software. Then the customer
would have to wait only if more than one other customer was already
waiting to get an estimate.

This certainly solves the problem for creating the customer es-
timate. However, remember that one of the actions that must be
taken by the system is to add any estimate to the estimate file. In the
case of using two machines for the salespeople, there will be two
estimate files, one in each machine. When a customer later comes
back to actually place an order for which he or she previously received
an estimate, which file do you look in?

This could be resolved by using the salesperson’s name to help
identify which file the estimate is in. In fact, it makes some sense
that the salesperson who took the estimate should also take the order,
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especially if he or she is on a commission. But this scheme goes
somewhat awry if the original salesperson is out sick or on vacation,
or is busy with another customer when the customer returns to place
the order. In addition, what do you do if the customer has lost his
or her copy of the original estimate?

Another problem of the system described above is that it would
make adding functions to the system extremely difficult. For in-
stance, what if the store owner later wants to add a facility to generate
a mailing list from the estimate and order files? Having multiple files
for the same function would make this very difficult.

Finally, the mechanism for calculating discounts requires keeping
particular data about each customer. This data must be updated
every time a customer makes a purchase. This function would be
greatly complicated if each of the computers needed its own copy
of this customer information file. With multiple copies, the accuracy
of the information (called the integrity of the file) is much more
difficult to ensure.

Although a system can be created that would, for instance, update
the main files for estimates, orders, and customers at the end of the
working day, such a system is fraught with danger and inconveni-
ence. A simpler solution would be to return to the single computer
idea. However, instead of having a single access point to the system
(e.g., a single keyboard and monitor), a multi-terminal system could
be used. In this way, each salesperson could have a terminal on his
or her desk hooked to the main system. Salespeople could all access
the same file “simultaneously” (i.e., close enough to count), so that
only a single copy of the files would be needed. Such a multi-user
system could also provide access to the information contained in the
tiles to other employees, such as the secretary and delivery crew.

A third approach would be to use a network system, which con-
nects multiple computers so that they can access common data. Such
a system typically provides storage on a hard disk of up to 100
megabytes and access to a shared printer. This can be more cost
effective than a multi-user system if the store already has more than
one computer.

A small store would probably begin with a single computer lo-
cated on a salesperson’s desk. As the store grew, however, it might
add a second computer, suffering with the inconvenience of multiple
copies of the data for a while. Finally, as the store became even more
successful, it might add a network system or convert to a multi-user
system.
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I 1.3 MODULAR DESIGN

Once the general description of the program is completed, we should
have a good feel for some of the program’s functions. However, the
program’s description is still so general that we should not jump
directly into the design phase. Instead, we should perform a prelim-
inary design, which includes defining the functions of a program in
more detail, defining some of the data that will be used, and sim-
plifying some of the logic that will be part of the program.

Our ultimate goal, naturally, is to reach the production phase,
the point in the life cycle where the system will be used to perform
real work. Maintenance is essentially concurrent with production
because of the frequent need for making changes to the system. Such
changes may be due to errors that were not discovered during testing,
modifications to the physical environment (e.g., a new computer was
purchased), or modifications to the system’s specifications.

Now that we have a general idea of the application’s overall func-
tion, it is time to begin breaking this rather broad description into
smaller pieces to get a better feel for the exact functions that must
be performed. As C.A.R. Hoare, one of the most respected computer
scientists, put it, “Inside every large problem is a small problem
struggling to get out.” While this is perhaps more an indication that
most large problems are really only small problems in disguise, it
can also be taken as an indication that every large problem is best
attacked by breaking it down into a number of smaller problems that,
individually, can be easily resolved. This concept will be referred to
as the principle of modularity.

The rest of this chapter is concerned with turning the general
description (the large problem) into more detailed descriptions of
the various functions (the smaller problems) that the application must
perform. This results in a preliminary design that serves as a base
for the design of the program’s logic. In addition, it provides an
opportunity to evaluate the application by providing some detail
about the application’s functions, without it being necessary to fully
implement the functions.

Modules

Up to this point, we have been most concerned with the functions
that a program will perform. These functions usually provide natural
dividing lines within the program, and will form the basis for im-
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plementing the code. However, up to now we have been treating
these functions informally.

The term module can be used more formally to describe a func-
tion. A module is a section of the program that performs exactly one
function. This section might be a block of code (a few lines of code
that are related) or an entire subroutine. The main concern is that
each module is self-contained. If a particular module is removed
from the system, only the function that that module performs should
be affected.

The main task to be accomplished in the preliminary design is
to define the various modules of an application. This 1s done by
treating each function of the application as if it were a separate
program, and creating a general description for each function. Whether
each function will then be a small block of code or a complex sub-
routine is immaterial at this point.

It 1s not sufficient, however, simply to call each function so de-
fined a “module.” The requirement that each module have only
one purpose is not always easily met, but is essential to the concept
of modularity. By observing some of the characteristics that “good”
and “bad” modules exhibit, we can begin to develop commonsense
approaches to dividing up a large task into smaller ones.

Module Cohesion

First, the term cohesion can be used to indicate the uni-functionality
of the module, i.e., whether the module does indeed adhere to our
single function requirement. A “good” module has strong cohesion;
all statements within the module are strongly related to one another.
If the statements are strongly related, then they collectively perform
one function. If a module were developed to perform more than
one function, then the statements of two functions would not be
strongly related, and the cohesion of the module would be described
as weak. An exceptionally weak module, the opposite of a cohesive
module, would be a collection of unrelated statements.

The object, then, is to define cohesive modules. Some modules
of a particular program may be more cohesive than others, since the
dividing lines of functions are sometimes fuzzy at best. This is not
necessarily worrisome. However, strive for defining modules that
exhibit as much cohesion as possible, in order to ensure that the
principle of modularity is exploited to the fullest.
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Module C oupling

A second area of concern is a module’s relationship with other mod-
ules. The notion of coupling describes those elements of a module
that are shared with other modules. Such sharing makes one module
dependent on other modules to some extent. It is the extent to which
these modules are coupled that is of concern.

The object is to create modules that are as independent of one
another as possible, so that a change in one module will not affect
the functioning of any other module in the system. This isolates
changes to as few modules as possible. In addition to saving time
when changes are made, this improves the quality of the program
by limiting the number of modules that can be infected by the in-
troduction of a bug.

The obvious theoretical limit of coupling is for all modules in a
system to be completely independent, with no coupling present.
However, it is usually impossible to reach this limit in practice. The
problem is that modules can be related to one another in many
different ways. Elimination of one kind of coupling may increase
another kind. In addition, modules in a system are naturally related
by the simple fact that all the modules perform functions related to
the goals of the application.

The most common form of coupling is data coupling, where data
or data descriptions (e.g., data definitions in Pascal) are shared be-
tween modules. When such sharing is handled using a highly formal
protocol, the resulting data coupling is usually of little concern. Ap-
propriate mechanisms for sharing data between modules are dis-
cussed in Chapter 3 (3.2 Implementation Guidelines). Such coupling
is generally necessary in order to avoid the extremely difficult and
time-consuming procedures that would be necessary to totally elim-
inate data coupling, and so is well tolerated.

Top-Down Development

Now that we have some notion that large problems can be broken
down into smaller problems that are (we hope) easier to resolve, how
do we go about this modularization of a program? It is quite im-
portant that a program be divided along natural lines, and that mod-
ules are selected so as not to make the definition of later modules
difficult or unnatural.

Learning to identify natural modules in a system comes only with
practice. At first, defining such modules for a system may take several
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attempts. It is not uncommon even for professionals to find that the
design they have been developing won’t be satisfactory because of
the division of the modules selected.

Most professionals use a method called stepwise refinement when
developing a design for a system. A more informal name for this
technique is top-down development. The formal name indicates that
the method will be iterative, i.e., is a set of steps that are followed
multiple times, with each iteration giving additional refinement to
the design. The informal name indicates the starting point of the
method, at the topmost level of the design.

The top of our design so far is the general description of the
application. We will begin with this description of the large problem,
and successively add levels of more detailed description below it.
Each level is another step of refinement. We continue breaking the
levels down and defining additional levels until adding more detail
would require that we write code. The process stops when all func-
tions that have been identified have been defined to this level.

For example, consider again the description of a checkbook sys-
tem that was given in the previous section:

The program will help the user to maintain his or her checkbook and to
balance the checkbook automatically at the end of each month. The pro-
gram will keep track of all checks and deposits of the account. With this
information, each month’s bank statement can be balanced simply by en-
tering the final daily balance listed on the statement. The program will
generate a new balance, which is then compared to the final balance in the
user’s check register. If these values are the same, then the checkbook is
balanced. If the values are not the same, then the user has made a mistake
in entering information about the checks or deposits.

Now begin to break this general description down into smaller
pieces. Each piece should describe a particular function that the
program must perform. The collection of all of the functions so
described should be the definition of the program.

This program follows a format that can be applied to most pro-
grams: input, process, and output. First, the program must perform
input operations in order to collect enough data to do something.
Next, the program processes the data that it just collected. Finally,
the program outputs the results.

Several types of input are required for the program. First, the
program is keeping track of all the checks and deposits ever made
to a particular account. This implies that a file that mimics the check
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register must be available. So, as one input, the program must have
some mechanism for reading this file into memory.

Second, the user must be able to enter new checks and deposits
into the file. This is a separate function from the one just described,
since it implies not only inputs from the user but also inputs and
outputs to the file.

Third, the user must input certain other information, such as
the final daily balance listed on the monthly statement. This again
is a separate function.

What processing must be done in the system? The program must
do some computations in order to generate a new balance. These
computations include calculating the total for all outstanding checks,
the total for all outstanding deposits, and the new balance. The
computation of the new balance can be thought of as a single function
that this program must perform.

In analyzing the computations, however, we have discovered ad-
ditional functions. How does the program go about totalling the
outstanding checks and deposits? We could think of there being a
function that totals outstanding checks, and another that totals out-
standing deposits. This is appropriate since these actions will un-
doubtedly require accessing the file that contains all the checks and
deposits.

What about the output function? The result of the program is
supposed to be an indication of whether or not the checkbook is
balanced. Although this final determination will probably be done
by hand, the program should at least output some type of report
that gives, for instance, the total amount of outstanding checks, the
total amount of outstanding deposits, the old balance, and the new
balance that will be used to determine whether the checkbook is
balanced. A more complete report might include lists of the out-
standing checks and deposits.

This output could be viewed as a single function, since it, in effect,
generates a single report. However, there might be separate func-
tions for generating the lists of outstanding checks and deposits and
the report itself.

Is this all of the functions that need to be defined for this simple
program? What about the statement that if the checkbook is not
balanced, then the user has entered something incorrectly? If there
is an error in the file containing the checks and deposits, how is this
error going to be corrected?

There must be another function which allows for entries in the
file to be changed, just as it must be possible to change entries made
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into the check register itself. This function might be viewed as over-
head that is often required when dealing with files. However, it, in
combination with another previously defined function, might be
thought of as a function that permits modifications to the check
register file. Such changes might be to add new checks and deposits
to the register (the previously defined function), to delete entire
entries, or to make changes to entries.

This last part could itself be broken down into sub-functions.
First, changes could be made to an entry because an error was made
when the entry was originally input. Second, a change could be an
update of the status of an entry, as in the case when a check’s status
changes from outstanding to cashed.

Getting the Big Picture

The example above shows how the general description can be used
to help define the various functions of a program. In addition, it
shows how these functions can be further broken down into com-
ponents that are sub-functions. However, the verbal description of
this process is somewhat difficult to follow. Even though this tech-
nique yields important results, it would be worthless if these results
make it no easier to design the program’s components.

Our ideas of top-down presentations and modularity can help
us begin to divide a task into a series of sub-tasks, each sub-task
performing a particular function. By then creating a hierarchy of all
functions, we can better see how the various functions interrelate.
In addition, we can easily “count noses” to be certain that all the
functions that the particular system is supposed to perform are, in
fact, represented.

By using a graphical representation of this hierarchy, we can
more easily grasp the overall picture of how the various pieces fit
together. This is really not a new idea. Figure 1.3-1 shows such a
hierarchy chart for a university administration. It is used as an or-
ganizational chart so that lines of command can be easily defined
and recognized. While fairly standard and easily readable, note that
such an organizational chart nevertheless can contain ambiguities.
For instance, is the Assistant to the President at the same logical level
as the Vice President for Academic Affairs? That depends on the
interpretation of what the solid lines mean. If they are interpreted
to indicate a level of responsibility, then the answer is probably no.
However, if they are instead interpreted to simply indicate who re-
ports to whom, then the answer is that the president’s assistant is at
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FIGURE 1.3-1: A hierarchy chart for a university administration.

the same level as a vice president. Actually, the Assistant to the Pres-
ident’s box was placed on a line separate from the vice presidents’
line to help avoid the former interpretation.

Building a hierarchical chart is generally an iterative process. This
allows us to define categories or functions on a very high level, and
then successively refine subcategories or sub-functions until a satis-
factory level of detail is achieved.

HIPO Charts

Several years ago, IBM formalized a method of constructing hier-
archy charts and defining details about the functions in the hierarchy.
This method, known as the HIPO (Hierarchical plus Input-Process-
Output) technique, is really two methods that help to accomplish the
final goal. The first is a representation of the overview, and is called
the H-chart or Visual Table of Contents (VTOC). The VTOC is a
formalized method for constructing organization charts for program
systems. The second method is the IPO chart, which provides details
about the inputs, processes, and outputs of an individual block of
the VTOC.

HIPO charts can be used for a variety of purposes in a system
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development project. First, HIPO charts are used retroactively to
document existing systems. While this is certainly not the most ef-
fective use of HIPOs—since they are not used to aid in the design
of the system—it can help when a system later needs to be modified.
Any documentation is better than nothing, and the HIPO charts
provide a quick, easy, standard reference for a system’s functions on
a high level.

Second, as will be the case in this book, HIPO charts can be used
to help organize a new system’s requirements and specifications.
Here the technique is used to construct a system overview and a
preliminary design of the system’s components.

Third, HIPO charts are used by some to carry the design to a
sufficiently detailed level so that implementation can begin. Person-
ally, I find this particular use of HIPOs to be unwieldy, in that HIPO
charts have a tendency to become too lengthy. Shooman [97] tells of
a room at RCA that was covered by HIPO diagrams floor to ceiling,
with the number of diagrams well into the hundreds, all for a single
military system. Such devotion to a tecchnique can ultimately become
more trouble than it is worth.

Finally, HIPO diagrams are often used during the “installation”
stage of a software package to support the installation and the train-
ing of personnel who will use or supply information to the new
application.

There are many advantages to using a technique like HIPO charts.
One is that nearly anyone can understand the charts; you don’t have
to be a computer professional with fourteen years of experience to
know what they mean. This is partly because they use a graphical
form that is already familiar to a majority of the people involved,
and partly because much of the detail of the IPO chart is written in
English. The systems analyst, the programming staff, management,
and the application user can all look at the same preliminary design
document and understand the functions involved. This makes it
much more likely that the software resulting from the project will,
in fact, satisfy the needs of the user. Therefore, the HIPO method
provides for a common communication medium for the entire staff
involved in the project.

In addition, HIPO diagrams can easily be constructed as a group
effort. Since most sizeable projects require that numerous people be
involved, at least in the initial design phases, the diagrams are an
effective medium for involving personnel on a variety of levels.

Another advantage is that the HIPO method naturally supports
the top-down and modular techniques already discussed. Effectively,
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then, the HIPO method is the instrument used to bring modularity
and the top-down theory into practice.

Finally, using HIPO diagrams during the preliminary design phase
allows the designer tremendous freedom in experimenting with the
design. This is possible because the details of the system are not yet
considered. In addition, HIPO diagrams are very easy to change,
since they are involved with what the system is supposed to do, not
how the functions are to be accomplished.

The Visual Table of Contents (VITOC)

As the name implies, the VTOC, or H-chart, will be used to graph-
ically represent a table of contents for the application, outlining all
the necessary functions for the system. The organizational charts in
Figures 1.3-1 and 1.3-2, while not H-charts in the strict sense, are
somewhat typical of what is used in designing program systems.

Note the use of a hierarchical numbering system in the boxes of
Figure 1.3-2. This provides a handy reference to identify the sub-
functions. In addition, the numbering system indicates the exact level
of the function being discussed, as well as to which higher-level func-
tion the particular sub-function belongs. These reference numbers
can be used to construct a type of legend to accompany the chart,
which gives more details about a particular box.

Recall our carpet store example from previous sections. Let’s now
design a VTOC for this application. The VTOC will later be used
for:

1. presenting an outline of the application as we see it to the user,
in this case the carpet store owner;

2. defining modules;

3. forming the basis of the design of individual functions.

Figure 1.3-2(a) shows the highest level functions for this appli-
cation. During the interview with the user we discovered that there
were several things the owner wanted from a system, namely a setup
that would allow customers to calculate their own estimates if they
wished (box 2.0), a more accurate estimate prepared by a salesperson
that would include any discounts the customer might be entitled to
(3.0), an order entry system (4.0), and a way to generate mailings to
customers (5.0). These have been divided into separate functions,
even though, as we shall see, some of the sub-functions will be similar
or even identical.
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DESIGN

CARPET
STORE
1.0
CUSTOMER SALESPERSON ORDERS MAILINGS FILE
ESTIMATE ESTIMATE 40 50 MAINTENANCE
2.0 3.0 ’ : 6.0

FIGURE 1.3-2a: These organizational charts, while not H-charts in a strict sense, are somewhat

FIGURE 1.3-2b

typical of what is used in designing program systems. They show the highest level
functions for a carpet store application (a); sub-functions of the “Customer Es-
timate” function and the “Salesperson Estimate” function (b); and the “Orders”
function (c).

Note that one additional function has been added that the user
didn’t specifically ask for, namely file maintenance (6.0). This is one
of those functions that is common to most sophisticated systems. The
general purpose of such a facility is to help the user to correct any
mistakes that might have been entered into a file. Without some
mechanism to modify the files outside the regular system functions,
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such correction becomes very tedious. We'll examine the details of
the file maintenance function later.

The massive carpet store problem has now been split into five
smaller, more manageable problems. Note that the inclusion of these
functions in this chart does not imply anything about exactly who
the user of each function is. Indeed, the user of each function may
be different. Certainly this is implied by there being two ways to get
an estimate for carpeting, either by the customer doing it for himself
or herself, or by the salesperson doing it. In addition, the store owner
may not want salespeople spending their time on clerical duties such
as preparing mailings to customers or file maintenance, so there
might be a different user or users for these functions.

The chart also is not meant to imply any particular order to the
execution of the functions defined. The order in which these things
occur will be random to a certain extent. Some of the activities could
be simultaneous, such as the customer estimate and salesperson es-
timate functions. One customer could be calculating an informal
estimate while the salesperson is busy calculating a formal estimate
for another customer. More important, these functions could be
executing on entirely different machines, with one set up on the
display floor just for customer estimates, the other sitting on the
salesperson’s desk.

The legend associated with this chart briefly describes each major
function. The descriptions are strictly informal but will later be ex-
panded in other documents to include many more details. At this
early stage of design, keeping everything simple is the key to the
success of this technique.

Figure 1.3-2(b) shows the sub-functions that might be added un-
der the “Customer Estimate” and “Salesperson Estimate” functions
(2.0 and 3.0). While these two functions perform similar tasks, the
main difference is that the customer estimate is not official, since it
does not take any possible discounts into account when calculating
the total. Therefore, the “Calculate Costs” sub-function of the cus-
tomer estimate (2.2) is not as elaborate as the one for the salesperson
function (3.3). Also, note the sub-function for entering information
about the customer in the “Salesperson Estimate” function (3.1). This
information isn’t needed in the informal customer estimate.

Figure 1.3-2(c) includes the details of the “Orders” function (4.0).
Here, what was previously an estimate is changed to an actual order.
Remember the store manager’s description of how this is handled
using physical files. An estimate sheet is found either by an order
number or a customer’s name in a folder that contains all estimates
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made within the last thirty days. This form is then transferred to
another folder that contains real orders for carpeting.

There are several complications to this procedure. First, there is
the possibility that a customer would like to place an order without
having first had an estimate drawn up. This requires special handling
in the order system. Additional information must obviously be en-
tered, such as the customer information (4.1.2.1) and the specific
room information (4.1.2.2). Second, the customer might have changed
his or her mind about the particular order, and either deleted from
or added to the room(s) to be carpeted, or changed the type of
carpeting in a particular room. Third, the actual cost of an order
might change because of changes in the cost of carpeting (perhaps
it has gone on sale since the estimate was made) or in a change in
the customer’s discount eligibility. The idea is always to give the
customer the best deal possible, so these factors might be taken into
account.

Finally, note that the format of the sub-functions presented in
the chart is slightly different than before. The boxes under 4.1 and
4.2 are connected by a line going down instead of across. This is
merely a way of fitting several boxes into the available space and
does not change the meaning of the boxes. This works only if each
of the boxes (such as 4.2.1, 4.2.2, and 4.2.3) is terminal, i.e., has no
further sub-functions underneath it.

Some Helpful Hints

There are several points that you should keep in mind when devel-
oping a VTOC for an application. First, as mentioned previously,
there is not a single VTOC chart that could be drawn for a particular
application. It is analogous to finding a path for driving to work.
While there may be a finite number of ways to do so, there is not
necessarily one best way, nor even a most obvious way. What works
best for you may not work for someone else. Also, the path you
follow on one particular day may be different than what you would
follow some other day.

Second, use the VTOC for a first round of debugging your de-
sign. Make certain that all functions you feel are needed in the system
are accounted for somewhere. This does not necessarily mean that
there is a box with that function’s name on it, but instead that you
at least have it in your mind which box that particular function is a
part of.
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Third, don’t be afraid to change your VTOC, even drastically or
to the point of scrapping an initial design entirely. If a function
doesn’t seem to be fitting into the VTOQC, it probably means that
some other function was improperly defined. Remember that any
mistakes in the design are much easier to fix now than later.

Finally, sub-functions can be defined down to as low a level as
desired, to the point where coding details could be presented. How-
ever, a good rule of thumb is that as soon as you need any detail
about how a function is going to be implemented in order to break
it down further into additional sub-functions, you stop. For instance,
in the “Calculate Costs” sub-function (3.3) of the “Salesperson Esti-
mate” function, trying to break the “Net” sub-function (3.3.1) down
any further would require knowing the formula for the calculation.
The same thing is true for the “Discounts” (3.3.2) and “Total” (3.3.3)
sub-functions.

The Input-Process-Output Chart

The IPO chart is a companion to the VTOC and serves some of the
same function as the legend, in that the IPO chart is a more detailed
explanation of each function of the VITOC. However, unlike the
VTOCG, the TPO diagram includes more specific details about the
functions to be performed as well as details about the inputs and
outputs that will be a part of the function.

Each function is divided into three areas (see Figure 1.3-3), in-
puts, processes, and outputs. English is used to describe each entry
in the chart, with explanations being somewhat general and avoiding
details of implementation. For example, the fact that a particular

FIGURE 1.3-3: The general form of the IPO chart.

Author: System:
Module: Date: Page of
Inputs Processes Outputs
> > |
1. “ 1. R
2- 2~ | 2.
3. | 3. 3.
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Author: 1. M. A

nalyst System: Carpet Store

Module: Old Es

timate Date: 9/18/84 Page 1 of 1

Inputs Processes Outputs
1. Estimates File 1. Search for sales- 1. Valid customer
2. Estimate # person estimate order
3. Customer name for this customer

ho

Edit estimate
l.delete rooms from
original estimate

2.add rooms to
original estimate

3.change room info
of original
estimate

FIGURE 1.3-4:

An IPO chart for the “Old Estimate” function of the carpet store application.

data file is going to be implemented as a sequential file and kept in
alphabetical order by customer name is immaterial at this stage. How-
ever, we must know something about the file. In this case, simply
knowing the various types of data that the file contains is sufficient.
This, coupled with data dictionary descriptions (1.1-4), will at least
aelp the programmer to identify where a particular piece of data is
used.

Figure 1.3-4 shows an IPO chart for the “Old Estimate” function
(4.1.1) of our carpet store application. First look at the processes.
Note that they coincide with sub-functions defined in the VTOC.
These sub-functions could themselves be described in an IPO chart,
if we thought it was necessary. Again, a useful heuristic (rule of
thumb) is to stop the detailed description of sub-functions just short
of when implementation issues would begin to appear. In the case
of the “Edit Estimate” sub-function (4.1.1.2), a more detailed de-
scription is given in the IPO chart which describes what type of
editing might be necessary. These sub-sub-functions could have been
included in the VTOC, had we considered it desirable. This points
out one purpose of the IPO charts. They can be used in the iterative
procedure of function definitions to help us refine the overall design.

Note also the outputs of this function, namely a valid customer
order. That is the object of the function.

Finally, the inputs to this process are records from the estimate
file created during the salesperson estimate process, and either an
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estimate number or the customer’s name. The latter data items are
used to find a particular estimate in the file. Note that at this stage
we are not concerned with which data item will be used to search
the file, the estimate number or the customer’s name. Likewise, the
processes described in the IPO chart do not include any decisions to
be made. We are not attempting to describe actual program logic at
this stage, only presenting a list of possible actions to be taken.

Figure 1.3-5 presents an IPO chart for the “Create New Order”
function (4.1.2). Note that the output of this function is described
the same way as the output of the “Old Estimate” function (4.1.1).
This is because, ultimately, we do not care how a customer’s order
came into being, only that it indeed represents an order from a
particular customer.

When preparing IPO charts, I usually find it helpful to work in
a bottom-up fashion rather than top-down, probably because I gen-
erally have a better idea of the details of inputs and outputs at the
lowest level first. This may seem in conflict with the top-down method
used to develop the VTOC, but once the VTOC is created, it matters
very little where you begin developing the IPO diagrams. Some an-
alysts prefer to develop the same level of the VTOC and IPOs si-
multaneously, using the top-down approach for both diagrams. How-
ever, it is a good idea never to let the adherence to a rule or technique
get in the way of practical expedience.

Another technique that is sometimes helpful is to prepare the
output section of the IPO diagram first. However, since the details

FIGURE 1.3-5: An IPO chart for the “Create New Order” function of the carpet store application.

Author: 1. M. Analyst System: Carpet Store
Module: Create New Order Date: 9/18/84 Page 1 of 1
Inputs Processes Outputs
— e

1. Customer information 1. Enter customer 1. Valid customer

2. Room information information

2. Enter room info
I.dimensions
2.carpet code
3.padding costs
4.installation

costs
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Author: 1. M. Analyst System: Carpet Store
Module: Enter Order Date: 9/18/34 Page 1 of 1
Inputs Processes Outputs
- oo > . . >
1. Estimates File 1. Find & edit old 1. Customer order
2. CGustomer info estimate into Orders File
3. Room info 2. Create new order ;
3. Add record to I

‘ ? Orders File
L

FIGURE 1.3-6: An IPO chart for the “New Orders” function of the carpet store application.

of the process section are often already known because of their being
related (if not identical) to sub-functions defined in the VTOC, it
might make sense to start with the process section. As should be
obvious by now, the development of HIPO diagrams is at best an ad
hoc technique.

In keeping with the bottom-up strategy, let’s look at the IPO
chart for the “Enter Order” function (4.1), shown in Figure 1.3-6.
Its processes are clearly defined by the sub-functions already devel-
oped. Note again that, although the two processes are mutually ex-
clusive (i.e., either the user will have an old estimate available from
which to develop the customer order, or an entirely new order will
have to be drawn up, but not both), there is no attempt to incorporate
decision making into the IPO diagram. This detail will be left for
later when the logic of a particular module will be designed.

The output of this function will be a new customer-order record
for the orders file. Note that we specifically state that the record will
be added to the orders file here, but didn’t indicate this in the sub-
functions 4.1.1 and 4.1.2. This is because it was not the job of either
of these sub-functions to add this record to the order file. Adding
this as a process to these two sub-functions would have meant having
an identical process in each function. When this occurs within sub-
functions of the same function, this usually indicates a redundant
feature that should be moved into the parent (next higher level)
function.

Finally, Figure 1.3-7 presents the IPO diagram for the “Orders”
function itself (4.0). Here, details from all lower level 1POs are in-
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Author: 1. M. Analyst System: Carpet Store

Module: Orders Date: 9/18/84 Page 1 of 1
Inputs Processes Outputs

1. Estimate File [ 1. Enter order i 1. Customer order

2. Orders File into Orders File

3. Customer info 2. Costs

4. Room info 1.for each room

2.subtotal for
all rooms

2. Recalculate —_—_— 3.discounts
Costs 4.subtotal includ-
ing discounts
5.tax

6.total cost
3. Printed report

3. Prepare report

— >

FIGURE 1.3-7: An IPO chart for the “Orders” function of the carpet store application. Note the
use of the arrows and brackets to group the outputs with the processes that generate
them.

corporated. Notice a slightly different technique used in the chart
to indicate inputs and outputs. Multiple arrows are used to group
the inputs or outputs together to indicate which process(es) they
belong to. Boxes or brackets can also be used to make these groupings
even more distinct. Again, the ad hoc characteristic of the HIPO
technique allows the exact form to be molded to individual tastes.

I 1-4 DEALING WITH DATA

There seems to be a continuous problem during the development
of a program with the “chicken or egg” syndrome. Can one really
discuss what a program is supposed to do before describing the data
the program will operate upon? Likewise, can one discuss data before
the functions that are to be performed on that data are known to
some degree? A certain amount of simultaneous development would
be the ideal way of dealing with this issue. Unfortunately, we are
serially-thinking beings. The best we can accomplish along these lines
is to do some of the development in parallel, overlapping the de-
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velopment of the program description with that of the data descrip-
tions.

This has already taken place to an extent in earlier examples.
Recall that it was necessary to describe in general terms what the
inputs and outputs of the various programs would be. This was the
beginning of the data descriptions that will be required for each
program. The data will have to be specified in much more detail,
however, before the program can be implemented.

It is difficult to know exactly how much detail about data is
necessary at any one point during the development of a program.
In the beginning, you can be quite general, just as you can be general
with the description of the program’s functions. However, the “chicken
or egg” problem keeps causing trouble. This is because sometimes
the functions of the program are most conveniently described in
terms of the data that they will operate upon. Therefore, it is im-
portant to pin down some of the details of the data fairly early.

Data descriptions are created in an iterative fashion similar to
that used in developing the functional descriptions of programs. You
will find at some point that the descriptions of the data you are
currently using are not detailed enough to allow you to proceed
further with the functional design. At such a point you will have to
define the data in more detail. You might only define them in enough
additional detail so that you can continue, however.

Data descriptions are especially needed early in the program
development in the case of files, since many of the functions that
will be defined within a program are concerned with the manipu-
lation of files. The main files of a system will probably evolve from
the manual system, such as the files that were briefly described in
the carpet store example of the previous sections.

Lt 1s not possible to describe all the data that a program will use
at the current stage of the development. Many data items will not
be needed until the functions of the program are themselves de-
scribed in greater detail. The data descriptions, therefore, will be
continually updated during the development of a program, probably
all the way through the implementation phase.

However, my inclination has always been to describe as much of
the data as I know will be used in as much detail as I can, as soon
as possible. Although such descriptions may be changed during a
later phase, they at least provide a starting point. Again, the devel-
opment of such descriptions can often spawn ideas for what functions
are needed in the program, or for how the functions should work.
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Data Attributes

Before we can discuss the main tools used to describe data, we need
to be a little more specific about just what constitutes data. A data
item can be thought of as consisting of certain attributes. The most
familiar attribute is value. We may have only a vague notion of exactly
what this term means, but most people have a commonsense feeling
for its meaning. One definition of “value” might be: a numerical
quantity of some type. Operations such as addition and subtraction
can be performed on a “value.” If, for instance, I said that the value
of a car was $1300, this would be understood to mean that the car
could be bought for about $1300. This number, 1300, can be used
in arithmetic operations such as multiplication. In this example, the
state license office might multiply this 1300 by, say, .06 in order to
calculate the amount (value) of state sales tax that is owed when the
car is sold.

Not all values are numeric in nature, however. We can also think
of all kinds of identifiers as values. For instance, names are values
when you think of a phone directory, which can be defined as a
collection of all the names of people who own phones in a particular
town.

This gives rise to the second attribute of data, type. There are
three main types of data. For numeric data, there are integers (what
we called “whole numbers” in grade school), and floating point num-
bers (any number with a decimal point in it). For nonnumeric data,
the most often used type is string. This type can have any collection
of characters as a value. Such a string might be made up of alphabetic
characters, digits, or special characters such as a dollar sign or as-
terisk. Some programming languages have additional data types.
Others, such as Pascal, even allow a programmer to define his or
her own type. However, the three types listed above are the most
fundamental ones, and are sufficient for defining most data.

Next, each piece of data typically has a specific range of possible
values that are valid. For numeric types, this range is generally spec-
ified as a minimum and maximum value for the data item. There
may be no theoretic limits for some data items, however. For instance,
what would be the range of a data item that was to hold a value for
the distance between stars? A reasonable minimum might be 0, but
what of the maximum? What about the range for a data item for
the gross national product? Again, 0 might be appropriate for a
minimum, but what of the maximum?
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In these cases, we must eventually define a practical range for a
value. All numeric values have fixed representations which are bound
by the design of the programming language and by the machine on
which they operate.

For string data, there is often no real range of valid values. What
is the range of valid house addresses, for instance? However, there
are some string data that can have a range specified, such as a name.
Can we safely describe a name as consisting of any letters, but no
numbers or special characters?

Finally, a data item can have a particular precision. For numeric
values, this is an indication of the maximum number of digits the
value may have. Exceeding this maximum will result in a value that
1s incorrect. For instance, if the precision given to an integer data
item is five, then a six-digit number would not fit. The number
123456 might be interpreted as 12345 or as 23456. Obviously neither
of these values is the value we wanted.

A number’s precision is a function of its type, its range, and the
particular programming language and computer you are using. It
can usually be thought of as a length, i.e., the maximum number of
digits that the value may have. In BASIC, for instance, a typical
precision for floating point numbers is given as seven digits. This
does not mean that the maximum value for a floating point number
15 9999999.0, however. Larger numbers can be represented by using
a special format similar to scientific notation. For instance, the num-
ber 12345678.0 might be represented internally in a form equivalent
to 1.234567 * 107. While this is not an exact representation of the
value 12345678.0, it is quite close. However, even such a small loss
of accuracy can be important in many applications.

For string values, precision can be equated with size. In this case,
the maximum number of characters that can make up a data item
must be specified. A value any longer than the maximum will be
truncated, resulting again in a loss of accuracy. The maximum length
for a string is a function of the programming language you are using,
but should be independent of the particular computer.

Data Definitions

A data definition is a formalized presentation of the form and sub-
stance of data. Its main objective is to describe a piece of data un-
ambiguously. This description lists the various attributes for each
data item. Each data item listed in the data dictionary is given a



DEALING WITH DATA

49

unique name that describes its function. Then the item is described
in terms of its value, type, range, and precision, when appropriate.

The definitions are specified using a special syntax so that each
detinition is as clear as possible. Following are the rules for specifying
data definitions.

Rule Meaning

x =a the data item called x is defined by the specification ¢, where
aisitself a data item to be defined or is a complete description
of the data item’s attributes

=a + b  the data item called x consists of both item « and item b

X

x = [a]b] x consists of either item a or item b, but not both

x = (a) the item specified by a is optional

x = {a} the item specified by a can occur zero or more times

x = yla} the item specified by a can occur y or more times

x = {a}z the item specitied by «¢ can occur up to z times, inclusive

x = yla}z the item specified by ¢ can occur between y and z times,
inclusive

Example 1: A Checkbook

In a previous section, we looked at several examples of checkbook
programs, from a simple calculator to a sophisticated record-keeping
system. Let’s prepare some of the data definitions that might be used
by the intermediate-level checkbook program that keeps track of all
checks and deposits using a computerized check register.

The easiest place to start thinking about data is in connection
with files. In this program, we know that we need some type of file
that will hold the information that makes up the check register. So
let’s begin with defining what the file will look like in terms of the
data that will be stored in it.

We can start with a definition such as

check-register-file = {[check | deposit]}.

This definition says that the check register is made up of zero or
more items that are either checks or deposits. This is certainly how
the manual check register works. This definition is complete by itself.
However, it introduces two new data items, check and deposit. These
new items must be further defined.



SYSTEMS ANALYSIS

50

We could define the data item check as

check = check-number
+ to-whom-name
+ date-written
+ amount
+ (note)
+ outstanding-flag

This definition indicates that a check is made up of five or six parts,
since the note item is optional. This definition combines data from
what is written on the check with the items listed in a check register.
This is desirable if we want more detailed information about the
checks than that normally supplied by the check register entry alone.

Since this definition introduces still more new data items, it is
necessary to continue creating definitions. We won’t stop until each
data item is defined in terms of format, which includes details about
the attributes (value, type, range, and precision) of the data item.
Such a definition can be called a base definition.

We could have specified the attributes for a check number directly
in the check definition, but it is usually more understandable to use
data item names when there is more than one data item in the par-
ticular definition. In this way a hierarchy of definitions is created,
similar to the hierarchy used to describe program functions in HIPO
charts. This makes it possible to create base definitions that are used
throughout the data dictionary.

The data item names should be selected so that they are mean-
ingful. Hyphens are used to connect words so that the result is some-
thing that resembles a name, rather than an English phrase. Mean-
ingful names are important, since they are the only way that the
meaning of the data item can be described.

It is usually easiest to continue defining the data items one at a
time, from the top down, until a base definition is reached. These
base definitions are the only ones that should specify the attributes
of the data item. In this example, we might continue creating defi-
nitions in the following order:

check-number = 3{digit}b

digit = “0” .. “9”

to-whom-name = 1{character}30

character = [letter | digit | special-character]
letter = [“A” .. “Z” | “a” . . “2"]
special-character = [

ey

u@ » I n#aa
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date-written = month
+ ¢/
+ day
+ «/”
+ year
month = “017 .. “12”
day = “017..“31”
year = “84”7 .. %99
amount = floating point number between 0 and
99999.99, inclusive, with exactly 2 decimal
places
note = {character}30
outstanding-flag = [“YES” | “NOB”]

There are a number of things to note about these definitions that
were not discussed when the syntax of definitions was presented
previously. First, quotation marks are used to indicate a character
value, often known as a literal string. It means that the exact char-
acters within the quotation marks are to be used. Thus, the valid
values for the data item outstanding-flag are the words YES and NOW,
where B means a blank (which must be treated as a character like
any other). This shows not only what the valid values (i.e., the range)
are for this data item, but also that the type of it is string, and that
the length of it is exactly three.

The two periods (. .) specify a range of values. In the letter def-
inition, for example, “A” . . “Z” specifies all letters from A to Z. In
this definition, note too that it is necessary to specify both upper-
and lowercase letters in order to be completely general.

Next, when dealing with purely numeric data, it is usually nec-
essary to revert to English phrases to fully describe a data item. For
instance, there is no easy mechanism to define the attributes of the
data item amount. In this definition, it was necessary to specify the
data’s type, range, and precision. However, a specific (literal) value
is seldom provided for numeric items. A range should almost always
be specified, however.

In this example, a check number is defined as any three- to five-
digit string. This gives an implied range of “000” to “99999” for this
data item, although this may not be exactly how check numbers are
used in the real world. For most banks, check numbers begin with
“101,” for example. This could not be exactly specified using the



SYSTEMS ANALYSIS

52

notation of the data definition. However, it could again be handled
with an English statement, such as

check-number = a 3- to 5-digit string, between “101”
and “99999”, inclusive

The to-whom-name has been defined as a string of between one
and thirty characters, consisting of letters, digits, or special charac-
ters. This should allow any person’s or company’s name to be written.
If thirty characters is not enough, the name will have to be either
abbreviated or truncated.

It must be understood that these definitions do not describe
variables of a program, but merely certain kinds of data that will be
used. Such definitions are somewhat easily translated into a language
like Pascal. It is not quite as simple to translate them into BASIC.
However, such definitions can make a program much more under-
standable and can help to eliminate errors that are normally intro-
duced because of confusion of various data items by the programmer.
In addition, such definitions are not assignment statements, even
though they may occasionally specify values. Their main purpose is
to define the format of the data, not values.

Finally, note that there is no relationship between various data
items, except as noted by the hierarchy, even when the definitions
use the same data item names. The use of names in more than one
place, such as in the case of letter, only implies that the data items
being defined share a common format in part. This makes sense,
considering, for instance, that we would want all dates in the system
to have the same format. This consistency is necessary for creating
an understandable and predictable system.

Example 2: A Carpet Store System

In the previous section, we developed a general description for a
system that would help a carpet store owner develop and keep track
of customer estimates and orders. In it, we defined at least two files,
one for estimates and another for orders. Two other files might also
be added in order to make certain calculations easier (this might not
be obvious until later when the details of the logic are explored).
The first is a file that contains a code for each carpet the store
sells, and an associated price of that carpet per square yard. The
second is a customer file that contains information about every cus-
tomer of the store. This file can be used to prepare mailings to
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customers, an added feature of this system that an analyst might
suggest to the store owner. In addition, this file would contain the
year-to-date purchases for each customer. This would be needed in
order to calculate the discount each customer receives with any new
purchase, and for defining a “regular” customer.

Figure 1.4-1 gives the data definitions for the estimate file. This
1s obviously a very lengthy set of definitions. It was created by simply
looking at the estimate form and detailing all of the items that must
be filled out by the salesperson in order to create an estimate. Some
of the items, such as customer-info, have been provided with their own
definitions in order to make the definitions more understandable.
In addition, it makes it possible to use these definitions as part of
other data items.

The exact format of certain data items is entirely arbitrary and
could be defined differently. For instance, the date item could have
been defined with dashes instead of slashes, or the names of months
could have been used. The state item would perhaps have been more
precisely specified by listing all fifty of the state abbreviations. How-
ever, such tedium can be avoided sometimes with simple English
statements. It will still be necessary for these abbreviations to be fully
specified at some point. A table copied from a zip code directory
could be attached to the data definitions in order to make this easier.

Note that some definitions have a specification such as 3{thing}3.
This means that there are to be exactly three things as part of this
data item.

Finally, it should be noted that the definitions given introduce a
certain type of error into the system. Note that the length and width
of a room can each be as large as 100 feet, 11 inches. This means
that the maximum area of a room is 10,404 square feet (102 * 102,
since the dimensions must be rounded up to the next yard), or 1156
square yards. The maximum total cost of one room can be $99999.99.
This implies that the maximum price of carpet per square yard could
be $86.50 (99999.99/1156). This seems to give enough leeway for
the room total, since few carpets, if any, will ever approach this price.
However, we can have up to seven rooms. The cumulative total for
all seven rooms must also be less than $99999.99. This means that
the average room size and average price of carpet per square yard
must be low enough so that the total dollar amount for all rooms
does not exceed $99999.99. This would occur, for instance, if there
were seven rooms to be carpeted, all approximately 100 feet by 100
teet in dimension, and the average cost of the carpet for each of
these rooms was greater than $12.37 (86.50/7).
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Estimate-file = {estimate}
estimate = customer-info
date
1{room-info}7
salesperson
net
discount
subtotal
tax
total
customer-info = billing-name
+ billing-address
+ (contact-name)
+ (phone)
= [person-name | company-name]
= first-name
+ “§”
+ middle-name
o
+ last-name
first-name = l{letter}10
letter = [“A”. . “Z” l B A |
middle-name = [{letter}10 | letter + “.”]
last-name = [{[letter | “B1}20
company-name = {letter | digit | “§”
digit = “0”. . “9”
billing-address = address
address = street
+ city
+ state
+ zip
street = 1{digit | letter | “if”}30
city = I{letter | digit | “p"}20
state = 2 letter state abbreviation
zip = [9{digit}9 | 5{digit}5]
contact-name = person-name
phone = 3{digit}3

w1

3{digi}3

4{digit}4
‘01,12

“wm

“01".."31”

wm

“84” .. “99”
room-info = width

length
square-yards
carpet-code
square-yards-price
padding-price
installation-price
room-total

I a

billing-name
person-name

«m18()

+

date =

+ o+ + A+

R S S RS

FIGURE 1.4-1: A data dictionary for the Estimates File of the carpet store application. In this
and subsequent figures, “B” indicates a blank or space. The list of data items is
given in a top-down fashion.
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FIGURE 1.4-1:

width = dimension
dimension = feet

+ inches
feet = 0 .. 100
inches = 0..11
length = dimension
square-yards = 0 .. 1156
carpet-code = “1” .. “9”

+ 4{digit}4
square-yards-price = dollars
dollars = floating point number between 0 and 99999.99,

inclusive, with exactly 2 decimal places
padding-price = dollars
installation-price = dollars
room-total = dollars
salesperson = person-name
net = dollars
discount = dollars
subtotal = dollars
tax = dollars
total = dollars

continued

While it is perhaps highly unlikely that this will ever occur in a
real-life situation, it must be realized that such cumulative errors can
frequently cause havoc in a system. They should be avoided at all
cost by placing reasonable ranges on all values, or by ensuring that
the precision of a data item is enough to handle the largest possible
values. In this case, the total data item should be able to handle seven
times the largest possible amount for a room total, plus the largest
possible tax amount. In this case, this would require that the precision
of the total data item be at least an order of magnitude larger than
the precision of the room-total.

Once the data definitions for estimates have been completed, we
can move on to defining the other files. Figure 1.4-2 gives the def-
initions for the orders file. Note that these definitions draw heavily
upon the definitions previously developed for the estimates file. This
is natural, since the estimate form and the order form are nearly
identical. The order definition adds the items that are filled in for
an order but not for an estimate.

Figure 1.4-3 gives the definitions for the carpet file that contains
a table of carpet codes and their per yardage prices. Again, since
carpet-code and square-yards-price were previously defined in Figure
1.4-1, this definition is complete.
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Order-file = {order}
order = estimate
+ order-number
+ installation-address
+ installation-date
order-number = 5{digit}5
installation-address = address
installation-date = date

FIGURE 1.4-2: A data dictionary for the Order File of the carpet store application. This portion

of the application’s dictionary refers to data items defined previously in the
dictionary in Figure 1.4-1.

Finally, Figure 1.4-4 gives the definition for the customer file.
Note again that a cumulative error could crop up here, since the
year-to-date-purchases has been defined as the same precision as the
total data item. The question that cannot be easily answered is What
maximum number of purchases is a customer likely to make in a
year’s time? Some assumption would have to be made about this.
This assumption would then be incorporated into the required pre-
cision for the year-to-date-purchases data item.

This concludes the definitions required for describing the files.
What about other data that will be needed in the program, much of
which will be individual items not connected with files? Such data
items must also eventually be added to the data dictionary, since the
dictionary will become a valuable part of the documentation when
the program has been completed. However, these additional items
may not be known until later in the life cycle of the program, such
as in the design or implementation phases. Whenever during the
program’s development you find the need for a data item that has
not yet been defined, add it to the dictionary. Such definitions can
take advantage of any previous definitions, just as was done in the
examples above.

FIGURE 1.4-3: A data dictionary describing the Carpet File for the carpet store application. Note

that the definition specifies that this file must contain at least one record.

Carpet-file = I{carpet}
carpet = carpet-code
+ square-yards-price
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Customer-file = {customer}
customer = customer-info

+ year-to-date-purchases
year-to-date-purchases = dollars

FIGURE 1.4-4: A data dictionary for the Customer File for the carpet store application.

Data Flow Diagrams

In a large project that uses a great deal of data and has many files,
it is often difficult to visualize how all the various pieces fit together.
This is especially true in systems with many programs, even though
these programs are obviously related to one another. The fact that
these programs may share data through files makes the task of keep-
ing track of what goes where even more difficult. The consequences
of not being able to keep track of this information can be quite
devastating. The most common problem occurs when a file’s format
must be changed. Without some type of guide to tell which programs
use that particular file, a program that should be changed might not
be, resulting in an error that is very difficult to trace later on.

Data flow diagrams are used to overcome this problem. Their
main purpose is to identify what programs in a system use which
data. There are many forms of such diagrams, some more complex
and detailed than others. The one presented here is, I feel, the most
straightforward, and provides sufficient detail to do the job well.

The diagrams are not going to be concerned with individual data
items, as was the case with the data definitions. They are instead
concerned with large collections of data, sometimes called data sets.
These data sets come in three main forms: data files, manual inputs,
and printed outputs. There are categories that can be defined within
each of these formats, but there is usually little to be gained by going
into any greater detail. For instance, data files might be stored either
on tape or disk, on floppy disk or hard disk. Such distinctions can,
for the most part, be safely ignored.

Finally, the data flow diagrams describe which data each program
in a system uses. The programs of the system can be obtained from
the HIPO charts that define the hierarchy of program functions in
a system. However, since even HIPO charts may change during the
life of a project, the data flow diagrams must be kept up to date.
Like most of the other techniques discussed in this book, these dia-
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grams should be viewed as dynamic, changing during the life cycle
as more details are known about the system.

The Diagram Symbols

As mentioned above, there have been many types of data flow dia-
grams developed, for several different purposes. The diagram de-
fined here is used to present a description of how collections of data
are used throughout the application system. The symbols it uses
are based on those used in flowcharts, which are discussed in Chap-
ter 2.

Figure 1.4-5 shows the symbols used in a typical data flow dia-
gram. The program symbol simply indicates the functions that will be
performed by a program. The name of the program is placed in the
box. This name is also associated with a general description of the
program’s purpose.

The printed output symbol indicates any type of output that is
printed. This includes the use of special forms, such as checks, as
well as simple reports. This symbol does not indicate data that is
displayed to the user of the program using a device such as a video

FIGURE 1.4-5: The symbols used for drawing data flow diagrams.

PROGRAM

PRINTED OUTPUT

OFFLINE MANUAL
OPERATION

MaNuaL INPUT

Data FILE
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display. Unless the screen is the main output device, such outputs
can be included in the diagram using another symbol, but such ad-
ditions tend to clutter the diagram and add little to the meaning of
it. We will, therefore, ignore any outputs of this kind in the diagrams.

An off-line manual operation is one that is performed by hand, not
in direct connection with the computer. Filling out a paper form,
tor instance, would be such an operation, and is, perhaps, the most
common task identified with this symbol.

Next, a manual input is any input that is performed directly by a
human being. This would include typing in data, pushing buttons,
or using a joystick. For most applications, this will simply mean data
that is entered by the user via a keyboard.

Finally, the data file symbol is used to indicate all types of data
files. This symbol is independent of the medium being used to store
the information, such as tapes, floppy disks, or hard disk devices.
Purists have a different symbol for each medium, including punched
cards and paper tapes. This certainly adds information to the dia-
gram. However, there is a lot to be said for simplicity in diagrams
that are often quite naturally complex. Therefore, we will use this
single symbol for all data files.

Figure 1.4-6 shows an example of a data flow diagram for a
system that is used by a manufacturing company. The system is made
up of seven programs. Associated with each program is one or more
collections of data that are used by that program in some way.

The flow lines indicate whether a data set is an input, an output,
or both, by the direction of the arrow. An arrow into the program
indicates an input. If the arrow is pointed into the data set, it is an
output. This output may be simply a modification to the data, and
does not necessarily indicate that the entire data contained in the
collection has been generated by the program.

For the Order Entry program, a salesperson creates an order form
by hand, which is then entered into the program by an entry clerk.
The program also uses the Product File, which is used in addition by
the Marketing program. This type of link is common throughout the
diagram, where the output of one program becomes the input of
another. This indicates an order to the execution of the various
programs of the system as far as the data is concerned. For instance,
the Order File produced by the Order Entry program must be created
betore the Inventory Control or Marketing programs can be executed.
Therefore, the Order Entry program must be executed first.

This does not mean that the programs cannot both be executing
at the “same time” in a time-sharing system, i.e., that the order entry
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FIGURE 1.4-6:

An example of a data flow diagram for a system that might be used by a manu-
facturing company.

clerk cannot be entering orders at the same time the marketing staff
is running a new projection for next month’s sales. What it does
mean is that the programs are probably operating on different ver-
sions of the same data set. The marketing people are probably using
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yesterday’s data, while the order entry clerk is creating today’s order
file.

Consider how it would work if the three programs Order Entry,
Inventory Control, and Shipping are all scheduled to run exactly once
each day, and they are all three begun at the “same time.” The Order
Entry program takes all day to run, so that the Order File is not ready
to use until the end of the day. The Inventory Control program does
not wait until the Order Entry program is finished generating a new
Order File in order to begin its work. Instead it uses yesterday’s file,
since the data in that file has not yet been used by the Marketing
program. The Shipping program, likewise, cannot wait for the In-
ventory Control program to finish, so it uses the Shipping File that was
also generated yesterday. But yesterday’s Shipping File was generated
using the day before’s Order File. As a result, the information gen-
erated by the Shipping program is two days old as far as the current
batch of orders is concerned.

This is a fairly common mechanism for scheduling programs
using multiple versions of data sets. It can be quite confusing trying
to keep track of which version each program uses. Unfortunately,
the data flow diagrams do not easily provide a method for keeping
track of such details. This is even more obvious when looking at the
data sets that are not only shared by multiple programs, but are also
both input and output by each of the sharing programs. The Product
Inventory File is an example of this. Which program created the ver-
sion that the two programs are using? What is the order of usage?
Should Manufacturing use the data generated by Inventory Control, or
the other way around?

This problem has been greatly alleviated by the creation of data
bases, data sets that can be shared among several users simultane-
ously. This eliminates multiple versions of each data set, so that every
program is accessing exactly the same set as any other program. This
technique could also eliminate the time lag between when data is
entered and when it is useable, as in the case of orders in the example.
This concept is being put into operation in most large-scale instal-
lations today. This mechanism is often much more powerful than is
required, however, and is usually reserved for quite complex systems
such as that shown in Figure 1.4-6.

The Carpet Store Revisited

Let’s return now to the carpet store system we’ve been developing.
We would like to create a data flow diagram for this system. We know
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several of the files that will be needed, and we can add the various
manual inputs and printed outputs that will be part of the system.

Figure 1.4-7 gives a first attempt at creating the data flow diagram
for this system. It shows the various files used as both inputs and
outputs. It also shows estimate and installation information being
entered manually into the system. Finally, the program generates
estimates, orders that are turned over to the delivery and installation
crews, and mailing labels.

But how useful is this diagram? It does include some information
that hasn’t been explicitly presented before, showing the manual
nputs and the various forms that are going to be generated. How-
ever, this is not a thorough enough view of the system to do us much
good.

In the previous section, we saw that the carpet store problem can
be thought of as a system made up of several programs. The main
part of the system can be viewed as two separate programs, even if
these are not implemented as physically separate pieces of code later
on. As shown in Figure 1.4-8, the first part is the Salesperson Estimate
program, which takes the Carpet File and Customer File as inputs, along
with the Estimate Information that is collected from the user and en-
tered manually by the salesperson. This program generates the Es-
timate File, containing a copy of the customer’s estimate that also is
printed out.

FIGURE 1.4-7: A first attempt at a data flow diagram for the carpet store application.
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FIGURE 1.4-8: A data flow diagram for part of the carpet store application.

The Orders program takes this new Estimate File as input, along
with the Customer File and the manually entered Installation Infor-
mation. It generates the Order File and a printed order form, which
is used by the delivery and installation crews.

The complete system was discussed in more detail earlier in this
chapter (1.3 Modular Design). It is left as an excercise for the reader
to complete the data flow diagram based on this design of the system.




Structured
Design Concepts

I 2.1 INTRODUCTION

Developing a program can, in many ways, be likened to writing a
book. The systems analysis phase can be viewed as the author’s proc-
ess of gathering notes and references. The second stage, designing
the program, is like outlining the book’s chapters. Summarizing the
content of the book’s chapters is akin to developing outlines of mod-
ules based on the definitions and notes prepared during the analysis
phase.

During this second stage, we are not concerned with the details
of the program’s implementation. While a programmer might feel
compelled or inspired to begin coding a module immediately after
its definition in the analysis phase, such temptation must be fought.
Invariably, giving in to such temptation ends in a program that is
poorly structured and, therefore, difficult to maintain.

The techniques discussed in this chapter may appear to introduce
redundancy into the development process. Indeed, since the design
of a program will be done in its own special-purpose language, called
pseudo-code, it will appear that the program is actually coded twice.
However, the algorithm that is designed using this pseudo-code is

64
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closer to English than to code. It summarizes the actions that are to
be taken in the program but does not introduce the details of the
implementation of these actions in a particular programming lan-
guage.

This accomplishes several key things. First, it makes each mod-
ule’s design independent of any real programming language. In this
way, the program could easily be written in any programming lan-
guage. The design of the program should not depend on whether
it is finally to be implemented in BASIC, Pascal, FORTRAN, COBOL,
assembly language, or some other. The further the design is kept
from the implementation language, the more adaptable it is. In ad-
dition, such insulation tends to strengthen the correctness of the
implementation.

Second, it is far easier to change an algorithm written in pseudo-
code than to change a module coded in a programming language.
Again, the analogy to writing a book is appropriate. The design of
a program is an iterative process and requires many drafts, just as
a book would. The use of algorithms and pseudo-code is like the
first draft of a manuscript; heavy editing will certainly be needed
before the final draft is made. In the case of programming, the
implementation itself can be thought of as the final draft.

Third, using these techniques allows a certain amount of exper-
imentation to take place. There is generally no one best solution to
a programming problem, just as there is no one best design for an
automobile. Alternate approaches can be tried with minimal cost in
time and material using algorithms and pseudo-code.

Finally, this type of designing allows the various approaches to
be evaluated through a testing procedure (algorithm and program
testing are discussed in more detail in Chapter 5, Program Testing
and Debugging). Only the more promising designs are pursued fur-
ther. The alternate designs can be discarded without concern for the
cost, since the cost is minimal in comparison to the cost of code.

In many ways, developing algorithms is like building models for
architects or engineers. If the design doesn’t work, only the model
suffers. It is much more costly to repair a fault in a fully built system
than in a model. Models are worked and reworked until the engineers
are satisfied that the design makes sense. From there, blueprints are
developed from which the final implementation is made.

We can consider the models to be the algorithms developed for
each module in a program. Flowcharts, a graphical form of algo-
rithms, could be considered the blueprints for the implementation
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phase of the project. No design engineer would attempt to build a
production system without models and blueprints. No professional
programmer would attempt to implement a sophisticated piece of
software without at least developing detailed algorithms.

|2-2 THE USE OF PSEUDO-CODE

Part of the reason that some time should be spent developing the
details of the logic of a program before actual coding begins is that
programming languages possess certain characteristics that do not
always lead to well-implemented programs. The most notorious of
these is the GOTO statement, which many computer scientists believe
to be the root of all evil when it comes to bugs in programs. Using
GOTOs indiscriminately in code leads to the “spaghetti bowl” syn-
drome; i.e., it is impossible to follow program logic when the code
is full of GOTOs leading from one section of code to another, per-
haps several pages away, just as it is impossible to follow a single
strand of spaghetti from beginning to end in a spaghetti-filled bowl.

The problem is that there is often no choice but to use the GOTO
statement to alter the flow of a program’s logic, simply because of
the nature of the particular programming language. For instance,
most implementations of BASIC and FORTRAN could not survive
without the GOTO. These languages usually do not support the
more complex logic constructs that make it possible to excise the
GOTO from use.

There are similar problems with other characteristics of certain
programming languages. However, probably more than ninety per-
cent of all programming is done in languages with these problems—
languages that do not adhere to the structured precepts we would
find most beneficial. So we have a great dilemma in which we must
decide either to forsake our favorite programming language for one
which does incorporate the structure desired, or to violate structured
programming philosophies.

To add even more confusion, there are times when only a par-
ticular language will be appropriate for an application. For instance,
sometimes it is necessary to write a program in assembly language,
which is obviously the most unstructured language in existence.
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Do we simply abandon the wonderful structured precepts that
have proven to be effective in eradicating bugs from our programs?
Luckily, pseudo-code provides us with a better option. A high-level
pseudo-code can be defined which contains all the control structures
required for developing a well-formed program. Because pseudo-
code is not a real programming language, there is no compiler for
it. But we can treat it as a real language while we are still in the
design phase of our program or system.

An algorithm developed using pseudo-code is simply a set of
instructions that will be followed, step-by-step, in order to perform
some task. It differs from a program in that it is expressed in a
natural language such as English, not a programming language.
However, English by itself is not adequate for the job because of its
penchant for ambiguity. Therefore, several standard structures have
been defined that control the sequence of execution of the steps in
the algorithm.

Pseudo-code plays several important roles during program de-
sign:

1. Itallows us to present the design detail of a program or module
at a high level using English-like statements, thus still avoiding
low-level logic issues, such as input and output considerations.

2. It provides a process which forms a foundation on which to build
structured programs, since adherence to the formal constructs
enforces structure.

3. Itacts as a bridge between the high-level design developed using
the techniques of Chapter 1 and the actual implementation details
that will be of concern in Chapter 3.

4. It provides one more link in the documentation chain.

There is only one real problem with pseudo-code: there is no
standard form for it. While there are usually minimal constructs for
pseudo-code, there have been a number of extensions developed. In
addition, allowing the actual instruction to be written in English
means that what one programmer uses to indicate a certain instruc-
tion will be different from what another programmer uses.

Let’s look at the various control structures usually defined for a
pseudo-code, and then readdress the issue of how to keep the style
both simple and understandable.
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Sequence

The simplest form of statement ordering is the sequence, which is
a series of statements that will be performed in a linear order. For
example:

get into the car

drive to the grocery store
select groceries

buy groceries

get into the car

drive home

unpack the groceries

We begin executing these instructions with the first one, namely
get into the car, and continue with the next in the list, advancing one
at a ume until all statements in the list have been performed. Some
purists would insist that each statement be ended with a semicolon,
so that each individual statement is more obvious. This is particularly
helpful when more than one statement appears on the same physical
line, such as

turn off the alarm; take a shower; get dressed

Here the semicolon acts to separate one statement from another.
This “rule” can be followed somewhat informally, however, and used
only when necessary, since we don’t have to worry about a compiler
becoming upset over changes in syntax.

[t is sometimes necessary to be even more explicit in identifying
a group of statements that should be taken together as a single block.
In this case, we can use special keywords to indicate which statements
are to be grouped together. For instance:

BEGIN
turn off the alarm;
take a shower;
get dressed

END

The purpose of this blocking will become evident when we discuss
the other control structures below. Notice that the keywords BEGIN
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Selection

and END are written in uppercase letters, while the statements them-
selves are in lowercase. It is usually helpful to be able to easily identify
keywords (words that are a part of the pseudo-code language) within
an algorithm, so they are usually highlighted in some way. Many
authors seem to prefer boldfacing the keywords, others underline
them. Capitalizing is a good method even when pseudo-code is hand-
written, not word-processed. Finally, indenting any instructions spec-
ified within the BEGIN-END block helps to highlight the block and
adds to the readability of the code.

We are often faced with situations that call for making choices, or
selections, in a program. In these cases, we need to be able to decide
on executing one group of statements or another based on some
condition(s). The choices that will have to be made range from the
trivial to the very complex. One statement in particular, the IF-
THEN-ELSE construct, is used in the vast majority of these situa-
tions. A more intricate mechanism, the CASE statement, is used when
there are more than just a couple of alternatives to select from.

IF-THEN-ELSE

We can ask questions and define alternate actions based upon the
answers using the I[F-THEN-ELSE construct. For instance:

IF trying to lose weight
THEN take the steps
ELSE take the elevator.

Here we have two well-defined alternatives. The action we take de-
pends on the answer to the question. If the answer is true (or yes),
then we perform the actions defined by the statements following the
THEN keyword (often called the true clause). If the answer is false
(or no), then we perform the actions defined by the statements fol-
lowing the ELSE keyword (or the false clause). The questions asked
must, therefore, be binary in nature, i.e., having at most two possible
answers, either true (yes) or false (no). The general form of the IF-
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THEN-ELSE can be shown as

IF (binary condition)
THEN (true statements)
ELSE (false statements).

If we want to indicate a group of statements being executed in either
the true or false clause, we can use BEGIN and END to block them.

IF this is the weekend THEN
BEGIN
take a nap;
mow the lawn;
party
END
ELSE work

Indenting and placing phrases on separate lines are used for em-
phasis and to aid readability by visually indicating the scope of a
block. The exact format for this pretty printing (as it's called in the
business) is entirely up to the programmer.

A particular decision may require an action only in the case when
the condition is true. In this case, the ELSE clause is simply elimi-
nated.

IF no food in the house for dinner
THEN order a pizza delivered

The ELSE clause is thus optional. If the condition is false, then the
next statement following the IF statement is executed, just as in any
sequence.

IF the gas gauge shows a low tank
THEN get gas;
drive to the convention

Note the semicolon at the end of the THEN clause. This is be-
cause the IF-THEN or IF-THEN-ELSE construct counts as a state-
ment itself. This should make it clearer that the drive 10 the convention
statement is not a part of the THEN clause. The indentation should
also make this clear. If there seems to be any ambiguity in this, use
the BEGIN-END block to partition the statements.
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IF low on gas THEN
BEGIN
find a gas station;
get gas
END;
drive to the convention

There isn’t a semicolon after get gas this time. We don’t need one
since it is followed by END. However, the END keyword needs a
semicolon here because it separates the IF-THEN statement from
the drive to the convention statement. Again, don’t be overly concerned
about getting this exactly right.

Although the ELSE clause is optional, the THEN clause isn’t.
For instance, the following is not valid:

IF older than 16
ELSE go to school

If there is ever a temptation to construct such a statement, simply
negate the condition and replace the ELSE clause with THEN:

IF not older than 16
THEN go to school

Another option for creating IF statements is that the conditions
themselves can be complex, combining more than one condition for
deciding whether some statements will be executed. Additional con-
ditions can be combined using standard conjunctions AND and OR,
which work just as they do in English.

IF mom is home OR dad is home
THEN keep stereo turned down
ELSE blast the neighborhood;

IF mom is home AND dad is home
THEN do homework

Here we have two IF statements combined in a sequence. In the
case of using the OR conjunction, if either of the conditions is true,
then the THEN clause is performed, otherwise the ELSE clause is
performed. In the case of AND, both conditions must be true in
order for the THEN clause to be executed.

Finally, IF statements can themselves appear as statements within
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either the THEN clause or the ELSE clause of another IF statement.
This is called embedding, nesting, or compounding IF statements.

IF today is Monday THEN
BEGIN
IF it is in the AM
THEN drink lots of coffee;
take long breaks
END

There is a danger in embedding too many IF statements, however.
In particular, the logic gets somewhat difficult to follow for even the
best programmer if nesting gets more than about three IF statements
deep. The only hope of avoiding this situation is to redesign the logic
so that the nesting is eliminated.

CASE

If the type of nesting is such that the conditions of the nested IFs
form a group of single alternatives, a different control structure for
selection can be used. It is called the CASE statement, and offers a
way of choosing between several mutually exclusive alternatives. For
instance, if we were to have the following situation:

IF today is Monday
THEN do one thing
ELSE
IF today is Tuesday
THEN do another
ELSE
IF today is Wednesday
THEN do a third
ELSE . ..

This would cause nesting six levels deep just to account for dif-
ferent processing for each day of the week. What if we need different
processing for each month of the year? The CASE statement pro-
vides a neater way of doing the same thing.

CASE day of week OF
Monday: do one thing;
Tuesday: do another thing;
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Wednesday: do a third thing;
Thursday:  do a fourth thing;

Friday: do a fifth thing;
Saturday: do a sixth thing;
Sunday: do a seventh thing
ENDCASE

Here, the case selector is the day of week. We then enumerate
all the possible options for this selector, being certain that each option
is in fact unique. When a particular case is selected, any statements
specified are executed, and then the next statement following the
ENDCASE keyword is executed.

A case option can have several different selection values, as long
as all options are unique in the CASE statement. For instance,

CASE day of week OF
Monday, Tuesday: BEGIN
do several things

END:;
Wednesday, Thursday, Friday: do something;
Saturday, Sunday: do another thing

ENDCASE

However, the case options must be mutually exclusive, i.e., there
cannot be any overlap of selections between one option and another.
The following is therefore illegal:

CASE day of week OF
Monday, Tuesday, Wednesday: do something;
Wednesday, Thursday, Friday: do another something;

Saturday, Sunday: do some other thing
ENDCASE

The first and second options have “Wednesday” in common. We can
only have one of the options selected whenever a particular case is
present.

Note in the previous examples that the cases enumerated give
all possible options for this particular case selector. There cannot be
any day of week other than those presented as cases, unless there is
an error somewhere. This is not always the situation. In addition, it
might be helpful to have some standard case available that gives us
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Iteration

an alternative to all other enumerated cases. An OTHERWISE case
would give us this alternative.

CASE day of week OF

Saturday: mow the lawn;
Sunday: BEGIN
go to church;
relax
END;
OTHERWISE: go to work
ENDCASE

The fully general form of the case statement is as follows:

CASE {(case selector) OF

(case #1): (statements for case #1);

(case #2): (statements for case #2);

(case #n): (statements for case #n);
OTHERWISE: (statements for all other cases)
ENDCASE

It is fairly obvious that there is some need for a construct that will
allow us to specify that a group of statements be executed a number
of times, i.e., repetitively. In common programming parlance this is
called a loop. What is not obvious to even some experienced pro-
grammers is that there are several types of loops, and that selecting
the proper type for a particular purpose is very important. Using
the wrong loop is just the kind of logical error that gives program-
mers nightmares. The problem usually doesn’t show up until months
after the program was tested and accepted for use. Then, even after
the bug does manifest itself, trying to locate the actual error is often
extremely difficult, since the code “looks” right.

WHILE

The mainstay of the loops is the WHILE statement. Its general form
is

WHILE (condition is true) DO (statement)
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Here, a condition 1s tested first. If the condition is true, then the
statement following the DO keyword is performed. We then return
to look at the condition again, then perform the statement again,
etc., until we reach a point when the condition tests out false. When
this happens, the next statement in sequence following the WHILE
is executed. For example:

WHILE the temperature is greater than 90 DO

stay in air conditioning

There are several things to keep in mind about WHILE loops.

More than one statement can form the body of the loop, i.e., can
follow the DO keyword, simply by grouping the statements using
a BEGIN-END block.

The condition of the WHILE must be binary in the same way as
the condition used in IF statements. In addition, the condition
can be complex, using AND or OR.

The testing of the condition of a WHILE loop happens first, i.e.,
before any of the statements of the loop body are executed. As
a result, it is possible that the body of the loop might never be
executed because the condition tests out false to begin with. No-
tice in the previous example, if the temperature is already less
than or equal to 90, then the loop body will not be performed.
This characteristic is very important to keep in mind.

The condition is checked to see if the loop is to be continued. As
long as the condition is true, the body of the loop will be per-
formed.

There is the possibility of creating the infamous infinite loop,
i.e., a loop in which the condition will never be false. Again in
the above example, if the temperature is never below or equal
to 90, we will never get out of the air conditioning. While any
possibility of having an infinite loop may seem remote, the pru-
dent programmer takes extra precaution when setting up a loop
to keep one from occurring. However, sometimes an infinite loop
might actually come in handy. Consider the customer estimate
function in our carpet store example. It is likely that this would
be an endless loop, returning to the beginning of the program
after every estimate is given. The loop might look like:

WHILE more customers DO perform customer estimate
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As long as customers keep coming in, the customer estimate
routine will continue to loop. This could be “forever,” if the store
is open twenty-four hours a day. A way of forcing an infinite
loop is to use a condition that will always be true, such as:

WHILE 0 = 0 DO something

In this case, something is done forever because 0 will always be
equal to itself.

There are certain situations where having the condition for con-
tnuance of the loop checked first can be a problem. Consider a loop
that 1s to check a heat sensor as part of a fire alarm system. What
we would perhaps like to say is:

WHILE temperature is less than 150 DO
check the temperature sensor;
sound the alarm

What we want is for the alarm to be sounded as soon as the
temperature goes above 150 degrees. As long as the temperature
stays less than or equal to 150, we stay in the loop checking the
sensor. So what’s the problem? When is the temperature sensor first

- checked? The first time we get to this loop in a program (maybe this

is the entire program, by the way), we try to look at the temperature
without having checked the sensor.

It’s like trying to guess the time without looking at your watch.
You might be right, but what are the consequences if you are wrong?
One solution to this dilemma would be to initialize the temperature
to be less than 150, thereby guaranteeing that the loop body (check
the temperature sensor) is performed. The only problem is that there
might be times when this won’t work properly, because of certain
constraints of the programming language you’re using. In addition,
this is really a “patch,” i.e., something that works but is not the most
natural way of doing the task.

REPEAT-UNTIL

The real problem here is that the condition is checked before the loop
body can be executed. What we need in this instance is a loop that
performs the body first, then checks the condition to see if the body
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should be repeated. This is called the REPEAT-UNTIL loop, and
would look as follows for the same alarm example as above:

REPEAT

check the temperature sensor
UNTIL temperature is greater than or equal to 150;
sound the alarm

Here we use a loop where the condition is specified at the bottom
of the loop. There are several differences between a WHILE loop
and a REPEAT-UNTIL loop:

1. You can place as many statements as you want between the RE-
PEAT and UNTIL keywords, without using a BEGIN-END block.
That’s because these keywords act as a natural block in identifying
the scope of the statements involved in the body of the loop.

2. The condition specified in the UNTIL section is exactly the op-
posite of the one specified for the WHILE statement. This is
because the condition is checked to determine if the loop should
be ended in the case of the REPEAT, whereas with the WHILE
statement, it is checked to determine whether the loop should be
started or continued.

3. Since the condition is not checked until the bottom of the loop
(after the body of the loop has been specified), this loop body
will always be executed at least once. Recall that the WHILE loop
body might never be performed.

Other than the above differences, the REPEAT loop condition
is treated the same way as the WHILE loop, i.e., the condition is
binary and may be complex. In addition, the caveat about infinite
loops applies to the REPEAT loop. In the above example, what hap-
pens if the sensor is somehow stuck at 100 degrees?

There is often a need for a third type of loop. Consider the
following:

I:=1;
WHILE I ( 10 DO
BEGIN
do something;
[:=1+1
END
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The do something in this loop will be performed exactly ten times.
The variable I is used to control how many times the loop will be
executed. There are three important parts to this type of loop: the
initialization of the loop control variable (I in the above example);
the testing of a continuation condition; and an increment of the loop
control variable. This combination of statements is so common that
most pseudo-codes include a loop specifically intended to perform
this kind of task more easily than the WHILE loop above.

FOR

The FOR loop is a special form of the WHILE loop, in which an
index variable is “automatically” initialized, tested, and incremented.
A FOR loop to accomplish the same as the above would look like:

FOR I :=1TO 10 DO do something
The general form for this loop is
FOR i := x TO y DO (statement)

where ¢ is the index or loop control variable, x is an expression for
the initial value, y is an expression for the test condition value, and
(statement) is a single statement or a compound (BEGIN-END block)
statement.

A variation of this is a FOR loop that will count down instead of
up. Its general form is:

For i := x DOWNTO y DO (statement)

In this case, i starts out as a larger number and is decremented until

it is less than the value to which the expression y evaluates.
There are several things to note about this loop:

1. Initialization is done when the loop is entered the first time, i.e.,
when the FOR statement is first executed. The initial value can
be anything, even negative.

2. The value following the TO keyword is used to construct a con-
dition for continuing the loop, i.e., as long as the index variable
is less than or equal to this value, the loop is continued. In the
case of DOWNTO, the test will continue the loop as long as the
value of the index variable is greater than or equal to the test
value.
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3. “Standard” use of this loop assumes a constant increment of 1.
This could be embellished by adding a STEP feature to the FOR
statement that would specify the increment amount (e.g., FOR 1
:= 1TO 10 STEP 2 DO something).

4. 'The initial and test values can be complete expressions, including
variables. For instance,

FORT:= XtoY + 3 DO something

is perfectly legitimate. When this is the case, however, the expres-
sions are evaluated only when the FOR statement is first encoun-
tered, and are not reevaluated during the execution of the loop.
For instance, consider:

J = 10;
FOR I :=1TO J DO
BEGIN
do something;
J:=12
END

This loop will still only be executed ten times, not twelve. Even
more important is that the loop control variable (I) cannot be
changed within the loop. For instance:

FORI1:=1TO 10 DO
BEGIN
do something;
I:=1+3
END

is not legal. Therefore, never change variables used in the FOR
statement while inside the loop body, since all it does is make it
more difficult to read the code.

5. Since the FOR loop is based on the WHILE loop, the loop body
might not ever be performed. This situation occurs whenever
the initial value is already greater than the test condition value.

It cannot be noted too strongly that any apparent similarity be-
tween the FOR loop specified here and the FOR-NEXT loop of a
dialect of BASIC is merely superficial. It should not be assumed that
they are the same. One major point of difference may be 5. above;
some versions of BASIC base the FOR loop on the REPEAT loop,
not the WHILE loop. In addition, several versions of BASIC allow
the programmer to change the values of any variables used to control
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the FOR loop, such as the loop control variable. Some authors even
encourage techniques that require such an action. This is discussed
in more detail in Chapter 3, Structured Programming. For now,
forget what you might know about FOR-NEXT loops in BASIC and
get familiar with the FOR loop above.

Finally, loops can be embedded just as the IF or CASE statements
can be. This means that any loop can appear within the body of any
other loop. For instance:

WHILE A (5 DO
REPEAT
FORI:= -3 TO 17 DO
do something
UNTIL we're done

Here we have a FOR loop embedded inside a REPEAT loop, which
is itself embedded within a WHILE loop. This can get pretty tricky
to decipher, so use this technique with extreme caution.

|2-3 ALGORITHM DESIGN

Returning to the book-writing analogy, it is as difficult to explain
how to develop algorithms as how to write a book. There are certain
techniques that many authors use to prepare themselves for writing,
and many methods they employ while writing. It is possible to explore
these techniques and methods in some detail. Unfortunately, this is
seldom enough to explain how to write.

It is generally accepted that the only way one learns to write is
to practice writing. The more experience you gain, the more likely
there will be improvement in your writing skills. This is not an ab-
solute. The absolute is that one does not become a good writer by
not writing. Writing is an art that must be practiced, much as one
practices a musical instrument. The more you practice, the more
familiar you become with style and technique. These eventually will
become second nature.

Practicing means two things. First, you must write frequently.
Few authors become good by writing only one short manuscript every
year or so. They become good by turning out hundreds, if not thou-
sands, of pages annually. Second, you must learn to revise what you
have written. This means being able to read what you have written
with a critical eye. You must learn the subtle art of unambiguous
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communication by being willing to modify what you have written
until it feels “right.”

The problem with this approach to learning to write is that it
takes a long time to succeed. Even worse, there are few ways that
you can be taught to write, just as there are few ways that you can
be taught to play a musical instrument. Invariably, one must practice
one’s art alone.

What can be taught are techniques that may make your practice
more productive and fruitful. Points of technique can be learned
from a master of the art. These techniques may improve the quality
of your own performance. The master becomes a mentor, instructing
you in how to learn to become a master yourself. This, of course, is
the ultimate goal.

Note that the purpose of the mentor has been defined as “teach-
ing the techniques of how to learn” a particular subject. This is
certainly the purpose of this book, and others like it—to teach you
how to learn programming skills. Unfortunately, teaching is a dy-
namic process, requiring constant feedback in order to be effective,
and the medium of the book is static, giving no feedback. This makes
teaching about subjects such as algorithm development very difficult
at best.

One solution to this dilemma is to attend programming work-
shops, in the same way that one would attend a writer’s workshop.
There, you can receive the immediate feedback that will ultimately
improve your performance. In addition, once some experience is
gained from such a workshop, you should find the techniques dis-
cussed in books easier to comprehend and implement.

Fortunately, in the case of programming, there is another way
to gain the experience required and to receive the feedback needed
to improve. The computer itself makes an excellent mentor!

By implementing an algorithm in code and executing it, the re-
sulting output of the program will tell you how well you have created
the algorithm. If the program does not perform its function prop-
erly, then in many cases the algorithms should be redesigned. This
iterative process creates a feedback loop that will ultimately improve
your ability to develop algorithms.

In this section, then, we will look at some of the standard tech-
niques for algorithm development. Most of the techniques discussed
are little more than definitions, however. Several examples are pro-
vided, showing the iterative process of algorithm development, but
this, in itself, cannot teach you exactly how to write an algorithm.

It is expected that you will develop your skill first by mimicking
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the examples given. Next, you should begin to experiment with var-
iations of the forms you are familiar with. Finally, it will be entirely
up to you to explore new forms in algorithm design. Through fre-
quent practice, your skill will grow. Your success will be exhibited in
well-written programs.

A First Example

Let’s first look at an example of an algorithm for an activity taken
from everyday life. In reality, we function by algorithms in order to
perform many of our daily functions. Consider, for example, a rec-
ipe. This is a step-by-step explanation of the actions that must be
taken in order to properly cook something. While our implemen-
tation of such algorithms may occasionally leave a lot to be desired,
the directions they provide are, generally, helpful in accomplishing
our goal.
Following is a recipe for making barbecue ribs (try it!):

Ingredients:

1 rack of pork ribs 1/4 cup lemon juice
3 tbls. chopped onion 1 cup ketchup

2 tbls. butter or margarine  1/2 cup finely

2 thls. granulated sugar chopped celery
2 thls. vinegar 1 tsp. dry mustard

1 tbl. Worcestershire sauce  salt and pepper

Salt and pepper the ribs. Place ribs on center of grill. Coals should be pushed
to the side, with a drip pan in between two piles. Cook covered for 75
minutes. During the last 20 minutes, brush on the barbecue sauce. The
sauce can be made as follows: Melt the butter or margarine in a skillet.
Sauté the onions until they are tender. Add the remaining ingredients.
Cook for about 20 minutes. If you like slightly tangier sauce, add either
1/4 tsp. chili powder or 1/2 cup chili sauce.

Nearly anyone could follow this recipe and end up with a successful
meal. This particular sauce may not be to everyone’s liking, but
following the directions faithfully will reproduce the result intended
by the cook.

This recipe is very similar to a general description of the result
we are looking for. It is not quite an algorithm in the form we would
like, however. Let’s convert the recipe into a proper algorithm using
the pseudo-code described in the last section.

Our first attempt might be to think in terms of the highest level
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functions that we need to perform. In this case, it might be:

Make-Barbecue-Ribs.
BEGIN
Make-the-Sauce;
Cook-the-Ribs;
Put-Sauce-On-Ribs
END;

Note that making the sauce has been specified prior to cooking the
ribs. Although it is possible for two things to happen simultaneously
in real time, this is generally not possible for a computer. We should
specify only one thing to happen at a time in an algorithm. We would
want to make the sauce first, because otherwise the ribs would be
getting cold while we prepared the sauce. While this would still ac-
complish our goal, it would not accomplish it in the most desirable
way. This is one of the important techniques of algorithm design—
getting things to happen in a logical order.

Although the algorithm above specifies the actions necessary to
have barbecue ribs for dinner, the specifications are not detailed
enough to be followed by a barbecue neophyte. If we think in terms
of modules, however, we can see that the above algorithm does pro-
vide us with the skeleton of the steps to be followed. If we treat Make-
the-Sauce as a reference to another algorithm, we can build a separate
algorithm for that action alone. This algorithm might appear as:

Make-the-Sauce.
BEGIN
Melt the butter or margarine in a large skillet;
REPEAT
Sauté onions
UNTIL onions are tender;
Add remaining ingredients;
IF you like tangier sauce THEN
IF you have chili powder THEN
Add 1/4 tsp. chili powder
ELSE
Add 1/2 cup chili sauce;
REPEAT
Place skillet over medium-low heat
UNTIL 20 minutes elapse
END;
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This obviously looks somewhat different from the original recipe.
In order to unambiguously describe the actions, it is necessary to
introduce control structures. While the original recipe might be un-
derstandable to human beings, it is necessary to use very careful
phrasing when preparing an algorithm for a computer to execute.

Note that a couple of the statements had to be rearranged in
order to make sense in the algorithm. In addition, look at the IF
statements for deciding whether you want tangier sauce. The im-
plication here is that the second IF statement won’t be executed if
you do not want tangier sauce. If you do want tangier sauce but do
not have chili powder, this algorithm assumes you have chili sauce
on hand. Such assumptions are not always reasonable. Perhaps a
better way to express this would be:

IF you like tangier sauce THEN
IF you have chili powder THEN
Add 1/4 tsp. chili powder
ELSE
IF you have chili sauce THEN
Add 1/2 cup chili sauce;

But what do you do if you have neither ingredient but you want
tangier sauce? According to this code, you would add nothing to the
sauce. An assumption that you have all ingredients on hand is per-
fectly reasonable in this case, but such assumptions are not always
reasonable. Understanding what assumptions can and cannot be made
when developing an algorithm is a difficult task.

The second module might be represented as:

Cook-the-Ribs.
BEGIN
Prepare-the-Grill;
Salt and pepper the ribs;
Place ribs in center of grill;
Place cover on grill;
REPEAT
Cook the ribs
UNTIL 55 minutes elapse
END;

This is fairly straightforward. Note that, while the original recipe
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called for cooking the ribs for seventy-five minutes, this routine only
cooks them for fifty-five minutes. The next module, Put-Sauce-On-
Ribs, will be responsible for making up the final twenty minutes. In
addition, consider the statement Prepare-the-Grill. This didn’t occur
in the original recipe. However, the action was obviously implied by
the description. This is a third principle about algorithm design: you
must discover the hidden implications of the actions that need to be
performed.
The new module might be defined as:

Prepare-the-Grill.
BEGIN
Make two piles of charcoal;
Light charcoal;
REPEAT
Let charcoal burn
UNTIL charcoal covered by grey ash;
Place drip pan between piles of charcoal;
Place grill over coals
END;

Since this last algorithm does not introduce any new modules,
let’s return to the higher-level modules in order to complete the
specification of the entire algorithm.

The Make-the-Sauce and Cook-the-Ribs algorithms have now been
fully specitied. The only activity left undone is the module Put-Sauce-
On-Ribs. This could be specified as follows:

Put-Sauce-On-Ribs.
BEGIN
Brush sauce on ribs;
REPEAT
Cook the ribs :
UNTIL 20 minutes elapse
END;

Again, there are implications and assumptions that have entered
the algorithm. It is necessary to split an action here (Cook the ribs,
split as two time periods, first 55 minutes and then 20 minutes) in
order to allow the statements to progress in an orderly manner.
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In summary, the following principles should be kept in mind
when developing an algorithm:

1. Think in terms of modules that perform specific functions. Use
a top-down technique in defining each module’s contents.

2. Statements must be analyzed to discover their proper logical
order.

3. Any assumptions that may have been made about actions in an
algorithm must be discovered and explicitly presented.

4. Any hidden implications of actions in the algorithm must be
discovered and addressed explicitly.

More Mechanical Details

In section 2.2, The Use of Pseudo-code, we explored the control
structures on which the logic of an algorithm should be based. There
are other details that must be understood in order to adequately
present an algorithm. Following are discussions of these additional
details.

Variables

Had the previous example been an algorithm that we intended to
implement on a computer, it would have been necessary to flesh out
a few more details. For instance, how were we going to determine
how much time had elapsed? This would have required introducing
some counting mechanism, which in turn would have created a need
for some variable to keep track of the time.

VARIABLE DICTIONARY It will be necessary to keep track of
the values generated by calculations, even in algorithms where the
code 1s very English-like. As a result, we will need to construct a
variable dictionary that explains the purpose of each variable used
in the algorithm. One dictionary for each module should be con-
structed.

The dictionary should contain a list of the names of all the var-
iables used in one module. The name of a variable can be very
informally constructed of English words that describe the variable’s
purpose. Dashes or periods can be used to string multiple words
together to form a single name. In addition to a list of the variable
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names, the dictionary should contain a brief English definition of
each variable’s purpose.

What variables you will need for a particular module may not be
immediately obvious. You will undoubtedly add to the dictionaries
as you develop each module. Some of the variables will have been
previously defined using the data definition technique. This will
certainly form a strong base for the dictionaries.

COMPLEX VARIABLES Most variables will be either simple nu-
meric variables or string variables, but it will be necessary to allow
for more complex variables such as arrays and records. It is usually
not necessary to be specific about the form of these data structures.
For now, we will treat arrays as either lists or tables of values. In
referring to an element of these structures, we could use English
descriptions of the elements’ locations within the structure. Alter-
natively, we could use standard mathematical notation for referring
to elements. Finally, we could use a form that is similar to the syntax
of an actual programming language, although this could be some-
what confusing for someone not familiar with that language. For
example, any of the following forms would be acceptable:

the 10" element of the list

the J" element of list TEMPERATURES
TEMPERATURES;

TABLE(I,J) or TABLE[L]]

the element in the I'" row, J" column of the table

In the case of files, it is usually safest to assume that all input
and output is performed with records. We can, therefore, simply
refer to “. .. the record of file A...” in an operation. Individual
fields can be defined for the record in the variable dictionary. These
fields can be referred to simply by name. If the same field can be
associated with more than one record, it may be necessary to refer
to the specific record to which a field belongs. This is most often the
case when dealing with input records and output records for the
same file. These references can be of the form:

set X to TIME from the input record of file A
set TIME in the output record of file A to zero

Input and output operations are discussed later in this chapter in
the External Data section.
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Internal Data

Any values generated by the program itself, as opposed to obtained
from outside the program (e.g., from a file or a user), will be called
internal data. Such data is usually the result of calculations within
the program.

ASSIGNMENTS The ability to create values requires some mech-
anism to assign values to variables. Such an assignment can take on
a variety of forms in an algorithm. Some of the forms follow those
of popular programming languages, while others are more English-
like. Following are some examples:

let A = 17
set time to zero
total-cost : = net-cost + tax

Any one of these forms, or a combination of these forms, is acceptable
for representing an assignment statement. While the more English-
like forms are preferable for readability, it is likely that the more
algebraic forms will be necessary from time to time.

EXPRESSIONS The above results from the need to express com-
putations, which are naturally algebraic in nature. While a form such
as

set total-cost to net-cost plus tax

is understandable, it is perhaps a bit clumsy. Algebraic expressions
can be formed using the standard programming symbols of +, —,
*,/, ", and () for addition, subtraction, multiplication, division,
exponentiation, and parentheses, respectively.

It is important that the standard method of evaluating expres-
sions be observed. This means that parenthesized expressions are
evaluated first, followed by exponentiation, then multiplication and
division, and finally addition and subtraction. This order of prece-
dence is summarized in the table shown in Figure 2.3-1. The op-
erations in an expression are performed from the top down in the
order shown. For example, all multiplications in an expression are
performed before any additions or subtractions. For operators on
the same level, such as multiplication and division, the operations
are performed left to right. This is true for addition and subtraction
as well.
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FIGURE 2.3-1:

() - parenthesis, unary minus
N exponentiation

* 0/ multiplication, division
+, — addition, subtraction

A precedence chart for standard mathematical operations. Precedence increases
going up the chart. A higher-precedent operation is executed before one of lower-
precedence. Thus, multiplication is performed before any additions, unless the
additions are in parentheses.

For example, the expression
A*B+ C*D

is evaluated by first calculating A * B, then C * B, and finally adding
the two previous calculations. In a fully parenthesized form, this
would look like:

(A * B) + (C * D)

If we had wanted to cause B to be added to C before any mul-
tiplications were done, we could have used parentheses to change
the order of evaluations:

A*(B + C)*D

In this case, B is added to C first. Then, this result is multiplied by
A (because we go left to right). This next result is finally multiplied
by D.

External Data

There will also be a need to express an ability to obtain data from
outside the program. This external data will usually come from either
a user or a file. There are a number of words that can be used to
express both input and output operations. It is not generally im-
portant which terms you use, but some consistency is helpful in
keeping the actions unambiguous.

INPUT In the case of input, terms such as read, input, and get can
be used. It is a good idea to have different terms for inputting done
from various sources, such as from a user as opposed to from a file.
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This makes it easier to know what action is being referred to when
reading the algorithm. I generally prefer to use the term read for
inputting from a file, and get for receiving input from a user. For
example:

get the date
read a record from file A

The generic term mput might be used to indicate all types of
input. A phrase identifying the source of the input would then be
required, such as in:

input the data from user
input a record from file A

OUTPUT Again, there are different possibilities for terms to rep-
resent outputting data to files and users. In addition, there may be
more than one way to output a value to a user. For instance, it may
make sense to distinguish between values that are output to the
monitor screen and those sent to a printer device. Having special
keywords to represent each of these situations would make the al-
gorithm more readable. It should be noted, however, that there is
no requirement to make such distinctions, and that they should only
be made if you feel they would help make the algorithm more un-
derstandable.
Following are some examples:

output the record to the employee file
display the date
print the report

In these examples, the term oufput is used to refer to files, display
indicates data that is listed on the user’s monitor screen, and print
sends the data to a printer. For any other devices, the generic term
output can be applied. In addition, it may strike you as simpler to
just say

output the date to the user
output the report to the printer

Here, the single term output is used for all devices. Additional
information is included in the statement to indicate the destination
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of the output. This is perhaps more readable than the other forms
given above.

References to Other Algorithms

In the first example given in this section, we saw how another mod-
ule’s algorithm could be referenced simply by using the name of the
module. Wherever the name is used, we can think of making a sub-
routine call, suspending the current module until the called routine
has been completely executed. Execution of the suspended module
would be resumed following the completion of the called module.

Another aspect of referencing modules is the data upon which
the called module operates. Since the purpose of calling another
module is to have some specific function performed, it is reasonable
to assume that there is some relationship between the results ex-
pected of the calling module, and those expected of the called mod-
ule. Indeed, it is usually the case that the results of the calling module
are dependent upon the results of the called module.

Consider briefly the algorithm given in Figure 2.3-2 to calculate
an average for a list of numbers. In this algorithm, the sub-module
Calculate-Total is referenced. Within the sub-module, a FOR loop is
performed number-of-items-in-list times. Where does this module get

FIGURE 2.3-2:  An algorithm to calculate an average for a list of numbers.

Calculate-Average.
BEGIN
Get-List;
Calculate-Total;
set average to total-list / number-of-items-in-list;
output average to user
END;

Get-List.
BEGIN
get number-of-items-in-list from user;
FOR I := 1 to number-of-items-in-list DO
get item I of list from user
END;
Calculate-Total.
BEGIN
set total-list to zero;
FOR I := 1 TO number-of-items-in-list DO
add item 1 of list to total-list
END;
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this value? Obviously, the module Get-List is the original source of
the value for this variable. However, should we assume that every
value known in one module is also known in every other module?
Such values are called global values. A similar situation exists with
total-list and with the entire list of values being averaged.

In algorithms, we typically try to avoid the details about how
certain things are going to be accomplished. For instance, we did
not specify how input values are actually going to be obtained. This
is a detail best left to the implementation phase.

We could take the same approach with where variables get their
values. However, there is some reason to suspect that introducing a
simple mechanism for passing data back and forth between modules
would be a good idea. Such a mechanism should eliminate another
potential source for misunderstanding later on. In addition, having
this detail already dealt with in the algorithm will make the imple-
mentation phase a little smoother.

The mechanism of interest is called parameter passing. A pa-
rameter is simply the name of a variable that will be shared between
modules. We can differentiate between an input parameter, which
is a variable whose value is passed t0 a module, and an output pa-
rameter, a variable whose value is passed from a module. An input/
output parameter has the dual role of both the input parameter and
the output parameter.

The algorithm in Figure 2.3-3 is a rewrite of the example given
above for calculating the average of a list of numbers, using the
parameter scheme. For the Get-List module, all the parameters are
output parameters. For the Calculate-Total module, list and number-
of-items-in-list are input parameters, while fotal-list is an output pa-
rameter.

Using such parameter specifications makes it more obvious ex-
actly what values the called module will be using from elsewhere in
the program, and what values are expected in return.

Some Examples

We will now look at a few examples of algorithms that perform some
fairly common functions. These will be in the form of modules that
might be called from some other module, and parameter lists will
be used to let us know that the values of certain variables will be
obtained from outside the module.’
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Calculate-Average.

BEGIN
Get-List(list,number-of-items-in-list);
Calculate-Total(list,number-of-items-in-list total-list);
average : = total-list / number-of-items-in-list;
output average to user

END;

Get-List(list,number-of-items-in-list).
BEGIN
get number-of-items-in-list from user;
FOR I := 1 TO number-of-items-in-list DO
get item I of list from user
END;

Calculate-Total(list,number-of-items-in-list,total-list).
BEGIN
set total-list to zero;
FOR I := 1 to number-of-items-in-list DO
add item I of list to total-list
END;

FIGURE 2.3-3: An algorithm to calculate the average of a list of numbers, using parameter lists
to pass information to other algorithms.

Exchanging Elements in a List

This first algorithm is probably familiar to you. Its purpose is to
exchange the values of two elements of a list of values. This function
has a number of uses, and we will later build upon this simple module
to create a very useful tool. A first attempt at such a module might
be:

Exchange(x,y).
BEGIN
exchange the x* element of the list with the y" element
of the list
END;

The problem is that we already knew this much before. We must
further specify what the term exchange means in this context. We
might try:

Exchange(x,y).
BEGIN
set the x™ element of the list = the y" element
set the y" element of the list = the x™ element
END;

|
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Exchange(x,y,list).

BEGIN
temporary : = element at x" position in list;
element at x* position : = element at y'" position in list;
element at y" position : = temporary

END;

FIGURE 2.3-4: An algorithm for exchanging the values of two numbers in a list.

Unfortunately, this will result in both elements getting the value of
the y" element, since the first instruction wiped out the original value
of the x" element.

Figure 2.3-4 gives the correct algorithm for this function. It was
necessary to introduce a variable which will temporarily hold the
original value of the x" element of the list. In this way, that value is
preserved for placing into the y" position.

Find the Largest Value in a List

Another algorithm dealing with lists is one that will return a pointer
to the largest value in a list. The linear search technique demon-
strated in this algorithm is quite commonly used.

First, let’s imagine how we, as human beings, would perform this
function. Consider the following list of values:

17 34 16 21 66 13 17 0 62

How do we find the largest number? We can easily pick out that 66,
in this case, is the largest, but how did we select it? The method
involves quickly scanning the list until we recognize the largest. But
this still doesn’t give us an acceptable method that might be explained
to someone else.

Imagine that you can’t easily scan the entire list with your eyes.
Perhaps the list is too long, or the numbers are hidden from view.
For instance, imagine drawing the numbers out of a hat one by one.
In such a case, you might look at the first number of the list and,
for the present, assume that it is going to be the largest number in
the list. This may later be disproved, but for now it is sufficient. For
the list given above, the first number is 17.

The next step is to compare the next number drawn from the
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FIGURE 2.3-5:

hat to 17. Since 34 is clearly larger than 17, we don’t need to be
concerned with 17 anymore. Thirty-four is now the largest number
in the list so far.

We would next draw the third number, 16, and compare it to
the current largest number, 34. Since the new number is not larger
than the current largest number, we can ignore the new number. If
at this point we had looked at all the numbers in the list, we would
have found the largest number, namely 34. But since we have more
numbers, we must continue comparing each new number to the
current largest number.

Figure 2.3-5 gives an algorithm that performs such a search. The
algorithm must have the list and the number of values in that list
made available to it as input parameters. It will return a pointer (i.e.,
the position in the list) to the largest value in the list as an output
parameter.

Selection Sort

Finally, we can combine the previous two algorithms to sort a list of
values in ascending order. This is done by finding the position of
the largest value in the list and exchanging it with the last element
in the list. This places the largest value at the very end, in the position
that it would properly occupy if the list were already sorted. Next,
we select the second largest number in the list by looking at all the
values except the last one. Once this second largest number is found,
it is exchanged with the next-to-last element in the list, placing the
second largest number just before the largest number in the list.
These steps are performed iteratively until all of the elements of
the list have been placed in their proper places. The final result is
a sorted list. Figure 2.3-6 gives the final algorithm for this selection

An algorithm for a routine to find the largest value in a list. It returns a pointer
to the position of the largest value.

Find-Largest(list,number-of-items-in-list, position-of-largest).
BEGIN

current-largest : = 1;

FOR I := 1 TO number-of-items-in-list DO

IF element at I'"* position in list ) element at current-largest position
THEN current-largest : = I;

position-of-largest : = current-largest

END;
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FIGURE 2.3-6:

Selection-Sort(list,number-of-items-in-list).
BEGIN
FOR J := number-of-items-in-list DOWNTO 1 DO
BEGIN
Find-Largest(list,j,position-oﬁlargest);
Exchange(],position-of-largest)
ND

END;

An algorithm for a routine that performs a selection sort, using the previously
defined Find-Largest and Exchange routines.

sort. It takes the list and the number of values in the list as input
parameters. The sorted list is returned as an output parameter. Try
using this algorithm on the list of numbers given above.

A Complete Program Algorithm

We could combine the algorithm we defined previously for inputting
the list of values with the Selection-Sort algorithm to form an algorithm
that will function as a complete program to read in and sort a list of
numbers. This is shown in Figure 2.3-7.

Some Thoughts About Algorithm Development

FIGURE 2.3-7:

In the examples presented so far, the algorithms were really devel-
oped “out of thin air,” i.e., there was no analysis phase to produce
preliminary design tools such as data definitions or HIPO charts.

An algorithm for a complete program that performs a selection sort. The Get-List
algorithm is essentially the same as the one described in Figure 2.3-2.

Sort-a-List.

BEGIN
Get-List(list, number-of-items-in-list);
Selection-Sort(list, number-of-items-in-list);
Output-the-List(list, number-of-items-in-list)

END;

Output-the-List(list, number-of-items-in-list).
BEGIN
FORI := 1 to number-of-items-in-list DO
output element in I position in list to user
END;
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This obviously will not be the case when you are developing a real
application.

These additional pieces of information can be used to help de-
velop the logic of the algorithm. The HIPO charts tell you what
modules need to be developed. Their specifications give a general
description of the function of each module. The data definitions
provide the basis for the variable dictionary of each module.

With these tools in hand, an effective way to begin the algorithm
development is to describe what the program’s ultimate output is
expected to be. This provides a target on which to focus while de-
veloping the details of the logic. Envision what you want the output
of the program to look like, then try to transpose this vision to paper,
laying out, in general, where you want things to appear. Treat a
single page of paper as one screen that will be displayed to the user.

Once you have an idea about the expected outcome, begin to
define the algorithm with the highest level module (the main pro-
gram). Define what input values this module will need in order to
produce the final output of the program. Also, define the output to
be generated by this module. You must devise the statements that
will take the inputs and transform them into the expected outputs.

This technique can be followed in a top-down, a bottom-up, or
a combination fashion.

A Final Example

Figure 2.3-8 gives an H-chart for the Salesperson-Estimate module of
the carpet store problem. In this example, we will develop the al-
gorithms for this module and its sub-modules.

We can begin developing the algorithms in either a top-down
manner or a bottom-up manner. The top-down approach would
require us to develop the algorithm for the Salesperson-Estimate mod-
ule first, then develop the algorithms for the four sub-modules on
the next level down, and finally, the Net, Discounts, and Total sub-
sub-modules.

A bottom-up approach could begin in several places. It could
begin with any of the Enter-Customer-Information, Enter-Room-Infor-
mation, or Output-Report modules, since they are terminal modules,
i.e., they have no sub-modules. Other places to start would be any
of the sub-modules below the Calculate-Costs module.

I prefer using the bottom-up approach. It is a little simpler and
prevents additions to algorithms already developed using the top-
down approach, such as when a detail is encountered in a lower-
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FIGURE 2.3-8: An H-chart for the Salesperson-Estimate function of the carpet store application.

level module that should have been handled in a higher-level module.
In bottom-up development, I know all of the details of the modules
underneath the one I am working on. This makes it easier to spot
missing details. In addition, it lets troublesome details be “percolated”
up to a more global module. Since such details tend to be global in
nature, this makes more sense. In top-down development, I'm never
quite sure where certain details will be taken care of, since the lower-
level modules have not yet been defined in sufficient detail.

Let’s begin developing the algorithms for this application with
the Enter-Customer-Information module. This is a logical place to start,
since it begins to define the set of inputs that must be collected from
the user. We could also have begun with the Output-Report module,
since it defines the outputs that the program must generate.

Figure 1.2-2 on page 24 gives the form that the program must
create for the salesperson estimate. We can use this as a target for
determining what inputs need to be entered by the user, what cal-
culations need to be performed, and what the final outputs will be.

Before beginning to write the algorithm, we should prepare a
variable dictionary. This dictionary is based on the data dictionary
developed during the preliminary design. It also should include a
brief description of the purpose of each variable. These variables
will be used in the algorithms. It will undoubtedly be necessary to
add variables to the dictionary as the algorithms are further devel-
oped. Figure 2.3-9 shows the variable dictionary for the algorithms
that follow.



bill-name:
bill-address:
co-contact:
phone:

date:
num-rooms:
room[l. .7,1. 3]
room(i,1]:
room(1,2]:
room(i,3]:
room-prices[1. .7,1. .3]:
room-prices[i,1]:
room-prices[i,2]:
room-prices|i,3]:
room-cost{1. .7]:
net-amt:

width:

length:
carpet-code:
carpet-price:
padding-price:
install-price:
customer-file:
customer:
room-code[l. .7]:
ytd-purchases:
dsent-percent:
discount-amt:
subtotal:
tax-rate:

tax:
salesperson:

the name of the individual or company thatis to be billed; (billing-
name).

the address for the person or company specified by bill-name;
(billing-address).

the name of the contact person if bill-name is a company; (con-
tact-name).

the phone number of the bill-name or company contact; (phone).
today’s date; (date).

the number of rooms to be carpeted; integer, range 1..7, inclu-
sive.

an array that holds the room information. Each row is the in-
formation for one room. The individual information is specified
below:

the width of the I room; (width).

the length of the I" room; (length).

the area of the room in square yards; (square-yards).

an array that holds the price information for each room. Each
row is the information for one room. The individual information
is specified below:

the cost per square yard of the carpet selected for the I room;
(square-yards-price).

the cost per square yard for padding of the I™ room, if it is
selected by the customer; (padding-price).

the cost per square yard for installation of the I room, if selected
by the customer; (installation-price).

the total cost per square yard for each room, including the carpet,
padding, and installation costs; (room-total).

the net cost of all the rooms, not including discounts or tax; (total);
the width of a room; (width).

the length of a room; (length).

a code that uniquely identifies a style of carpet in the store;
(carpet»code);

the per-square-yard price of a particular carpeg; (square-yards-
price).

the cost per square yard for padding; this is a constant for all
padding, value 2.95.

the cost per square yard for installation; this is a constant for any
installation; value 3.95.

the file containing information about a customer’s year-to-date
purchases. This information is used to determine if a customer
1s a “regular” customer. (customer-file).

a record from the customer file; (customer).

the code of the carpet selected for each of the rooms. (carpet-
code).

the year-to-date purchases for a particular customer; (year-to-
date-purchases).

the amount of the discount the customer is entitled to; value
range of 0, 0.05, 0.07, 0.10, 0.12, 0.15.

the dollar amount of the discount a customer is entitled to; (total).
the net amount minus the discount amount; (total).

the percent sales tax applied; constant, value 0.06.

the dollar amount of the tax; (total).

the name of the salesperson entering the order; (salesperson).

FIGURE 2.3-9: A variable dictionary for the algorithms given in Figures 2.3-10 to 14. The items
in parentheses at the end of the definitions refer to the original data definitions
given (see Figures 1.4-1 through 1.4-4). Note that some of the items (such as the
padding price and tax rate) were not specified in the original data definitions,
and so have been more fully specified in this variable dictionary. This is because
these items were not part of any files, which is what the data definitions currently
represent. The more formal approach would be to add these items to the data

dictionary, then refer to them in the variable dictionary.
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Enter-Customer-Information.
BEGIN
REPEAT
INPUT date FROM USER;
INPUT bill-name FROM USER;
INPUT bill-address FROM USER;
INPUT co-contact FROM USER;
INPUT phone FROM USER,;
OUTPUT date, bill-name, bill-address, co-contact, phone TO USER
UNTIL information is correct
END;

FIGURE 2.3-10: The algorithm for the Enter-Customer-Information module of the carpet store
application.

Figure 2.3-10 gives the algorithm for the Enter-Customer-Infor-
mation module.

Figure 2.3-11 gives the algorithms for the Enter-Room-Information
module. Since this module introduces additional variables, the var-
1able dictionary needs to be updated.

In addition, note that there is a reference to a module—the Find-
Price module—that was not defined in the H-chart. During the de-
velopment of the Enter-Room-Information module, it was discovered
that there was no defined mechanism for determining the price of
a particular carpet. It would be most convenient to have a file that
contains such information about every carpet the store sells. Each
carpet has a unique carpet code associated with it. This code can be
used to locate a particular carpet’s price in the file.

Using such a file limits the errors that might occur on pricing,
and allows the management to easily change a carpet’s price. Intro-
ducing such a file would probably require adding to the data dic-
tionary.

'The MOD operator used in this algorithm produces the remain-
der of dividing the number on the left from the number on the right.
The method shown rounds up the width and length of the room to
the next number that is evenly divisible by three.

Finally, note that some of the details of the algorithm are some-
what vague, such as “If user wants padding” or “until correct.” These
statements will be fleshed out when the algorithms are finally im-
plemented in a programming language.

Next, let’s develop the algorithms for the Calculate-Cost module,
shown in Figure 2.3-12. Begin by discussing the sub-modules.

Although the calculations performed in the Net module could
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Enter-Room-Information.

BEGIN
padding-price := 2.95;
install-price : = 3.95;
REPEAT

INPUT num-rooms FROM USER
UNTIL correct;
FOR I := 1 TO num-rooms DO
BEGIN
REPEAT
INPUT width, length FROM USER
UNTIL correct;
room[L,1] := width + 3 — (width MOD 3);

room[L,2] : = length + 3 — (length MOD 3);
room[1,3] := (room[[,1] * room{I,2]) / 9;
REPEAT

INPUT carpet-code FROM USER
UNTIL correct;

room-code[l] : = carpet-code;
Find-Price(carpet-code,carpet-price);
room-prices[I,1] : = carpet-price;
IF user wants padding
THEN

room-prices{1,2] : = padding-price
ELSE

room-prices[1,2] := 0;

IF user wants installation

THEN
room-prices[1,3] : = install-price

ELSE
room-prices[I,3] := 0

END
END;

Find—Price(cm'peL-code,carpet«price).
BEGIN
REPEAT
INPUT carpet-info record FROM customer-file
UNTIL a match with carpet-code found;
get the carpet-price from the carpet-info record just found
END;

FIGURE 2.3-11: Algorithms for the Enter-Room-Information module of the carpet store application.
Parameters were added to the Find-Price reference in order to aid readability.
Note the initialization of the constants padding-price and install-price at the be-
ginning of this module.

have been done when the room information was entered in a pre-
vious module, it would not have followed our modularity principles
to do so. The inefficiency introduced, as a result, is that there are
two loops that step through the room information instead of only
one. In this case, however, the inefficiency is more than tolerable,
and the redundancy adds to the understandability of the algorithms.
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Calculate-Costs.
BEGIN
Net(net-amt);
Discounts(net-amt, dscnt-percent);
Total(net-amt, dscnt-percent, subtotal, tax, total)
END;
Net(net-amt).
BEGIN
net-amt : = 0;
FOR I := 1 TO num-rooms DO
BEGIN
room-cost[I] ;= (room-prices[I,1] + room-prices{,2] +
room-prices[1,3]) * room|[I,3];
net-amt := net-amt + room-cost[I]
END
END;

Discounts(net-amt, dscnt-percent).
BEGIN
REPEAT
INPUT next customer record FROM customer-file
UNTIL customer’s record found;
determine if regular customer using year-to-date purchases
from the customer record;
IF regular customer or order is not on credit
THEN discount-table(dscnt-percent)

END;
Dismum—"I“able(dscm-percem),
BEGIN
IF regular customer
THEN
CASE net OF
0. .1999: dscnt-percent := (.05;
2000. .4999: dscnt-percent := 0.10;
5000. .9999: dscnt-percent 1= 0.12;
OTHERWISE: dscnt-percent := 0.15
ENDCASE
ELSE
CASE net OF
0. .1999: dscnt-percent 1= 0.0;
2000. .4999: dscnt-percent : = 0.05;

5000. .9999: dscnt-percent := 0.07;

OTHERWISE: dscnt-percent :=(.10
ENDCASE
END;
Total(net-amt, dscnt-percent, subtotal, tax, total).
BEGIN
discount-amt : = net-amt * dscnt-percent;
subtotal : = net-amt -~ discount-amt;
tax := subtotal * tax-rate;
total : = subtotal + tax
END;

FIGURE 2.3-12: The algorithms that make up the Calculate-Costs module of the carpet store
application.
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The Discounts module calculates any discounts to which a cus-
tomer is entitled. It uses another module called Discount-Table, which
sets the percentage rate of discount for the customer. It was separated
into its own module since this table will also be referenced in the
Orders module. It is entirely reasonable to separate a duplicate func-
tion into its own module. In this way, only a single module must be
maintained if the discount mechanism or rates change in the future.

Figure 2.3-13 gives the algorithm for the Output-Report routine.
The term report has been taken somewhat loosely here to include
outputting the appropriate information to the estimate file as well
as to a printer for the customer. In this case, this is reasonable since
the formats of the two outputs are so similar. In other applications,
this might not be the case.

Figure 2.3-14 shows the algorithm for the main module. This is
little more than a driver program for the other modules. Note, how-
ever, that the salesperson’s name is input in this module. You may
have wondered when this piece of information would be entered.
Indeed, it probably became obvious that this function was required
when developing one of the other modules. However, since this
function did not appropriately fit into any of the other modules, it
was pushed up into this higher-level module.

Figure 2.3-15 shows how the Orders module might be written.
This is included to show the differences between this section of the
system and the Salesperson-Estimates section. Note that the logic to
determine if the customer is a “regular” customer has been included
in this module. In the estimate section of the program, this logic was
in the Discounts module. This logic is required here by the additional

FIGURE 2.3-13: The algorithm for the Qutput-Report module.

Output-Report.
BEGIN
OUTPUT date, bill-name, bill-address, co-contact, phone TO
PRINTER and Estimate File;
OUTPUT room headings TO PRINTER;
FOR I := 1 to num-rooms DO
OUTPUT room information TO PRINTER and Estimate File;
OUTPUT net, discount-amt, subtotal, tax, total TO PRINTER and
Estimate File;
OUTPUT salesperson TO PRINTER and Estimate File
END;
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Salesperson-Estimate.

BEGIN
REPEAT

INPUT salesperson FROM USER;

UNTIL correct;
EnLer-Customer—Informution;
Enter-Room-Information;
Calculate-Costs;
Output-Report

L END;

FIGURE 2.3-14: The final algorithm for the Salesperson-Estimate module of the carpet store ap-
plication. Note that its form is that of a driver routine that simply calls other
detailed sub-modules.

actions that need to be done when an order is actually entered. For
the Order section of the application, the Discounts module would not
need to include the logic for determining if the customer is “regular.”
The hierarchy of these modules can be seen in Figure 1.3-2¢ on
page 38.

Also note the inclusion of yet another file, the Pending File. We
needed some way of holding onto orders awaiting credit approval.
This can be handled neatly by placing them into the Pending File
until credit has either been approved or rejected. It is still unclear,
however, exactly what “discarding” an order entails, Also, the logic
of the module as shown will attempt to output an order regardless
of whether credit has been approved or rejected. It is left as an
exercise to work this out in more detail, but such details can be left
until the implementation. The algorithms given are more than suf-
ficient for moving on to the next phase of the development.

Algorithm Testing

Once the algorithms have been created, we cannot immediately jump
into implementing them in code without some attempt to verify that
they in fact do what we think they should. This testing consists of
making up some sample data that can be used while “executing” the
algorithms by hand. For the carpet store customer estimate program,
this would mean making up numbers for the inputs that were spec-
ified above. Using these numbers, follow the steps of each algorithm,
starting with the main program.

If the algorithms seem to generate the output that you expected,
then it is generally safe to continue with the next phase of the



Orders.
BEGIN
Enter-Orders;
REPEAT
INPUT a customer record FROM the Customer-File
UNTIL the customer’s record is found;
determine if the customer is a regular customer using year-to-date purchases from the
customer record;
IF purchase is not on credit
THEN
schedule delivery and installation
ELSE
BEGIN
IF regular customer
THEN
CASE credit OF

approved: BEGIN
remove order from Pending File;
add order to Order File;
OUTPUT delivery and installation invoice TO PRINTER
END:;
rejected: BEGIN
remove order from Pending File;
discard order;
OUTPUT rejection report TO PRINTER
END;
OTHERWISE: BEGIN
schedule delivery and installation;
add order to Pending File;
OUTPUT credit request TO PRINTER
END
ENDCASE
{end of IF regular customer, too}
ELSE {not a regular customer}
CASE credit OF
approved: BEGIN
remove order from Pending File;
add order to Order File;
schedule delivery and installation;
OUTPUT invoice TO PRINTER
END;
rejected: BEGIN
remove order from Pending File;
discard order
END;
OTHERWISE: BEGIN
add order to Pending File;
OUTPUT credit request TO PRINTER
END
ENDCASE
{end of ELSE for IF regular customer, too}
END; {end of ELSE for IF not on credit}
Recalculate-Costs;
Output-Report
END;

FIGURE 2.3-15: An algorithm for the Enter-Order module of the carpet store application. The
items in the brackets ({}) are comments that help explain the actions in the al-
gorithm without affecting how the algorithm works. Such statements are included
to help the readability of the more difficult passages of logic. Comments can be
added anywhere in an algorithm that requires a little additional explanation.
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development, i.e., implementation. If something seems to go wrong
while you are tracing the algorithms’ steps and the wrong output is
produced, you have one or more bugs in your algorithms. These
must be corrected before the implementation phase can begin. It is,
perhaps, more difficult to locate bugs at the algorithm stage than at
a later stage, but bugs discovered at this stage are far easier and less
costly to correct than if we wait until the algorithms have been coded.

Testing and debugging techniques are discussed in detail in
Chapter 5.

52-4 THE PROPER USE OF FLOWCHARTS

We have already seen how using one form of graphical represen-
tation of a program system can be an aid in designing the system.
The Visual Table of Contents (VTOC) discussed in Chapter 1 allows
us to quickly see the relationships of the various modules defined.
A visual representation of information can often lead to quicker
understanding of a concept than a verbal one.

Flowcharts are an old graphical form for representing program
logic. They have fallen into great disrepute these days, partly because
of their age. Flowcharts were developed back in the dark ages of
programming, i.e., the 1950s. Part of the impetus for their devel-
opment was undoubtedly the unstructured nature of programming
languages of the day, namely FORTRAN, COBOL, and assembly
language. Because of the uncontrolled use of GOTOs in the code,
the program logic was often anything but clear, and a programmer
had little hope of following anyone else’s code, let alone his own.
Flowcharts made it easier to follow the flow of the logic, since the
diagrams showed not only the individual statements of the program,
but also used flow lines to show the order of execution.

Many computer scientists believe that the flowchart has outlived
its usefulness. They feel that, since we have moved on to using more
modern programming languages that all but eliminate the GOTO,
there is no need to use a technique that was developed to overcome
the problems introduced by the GOTO. In addition, they figure that
since modern programmers would undoubtedly be developing their
programs in pseudo-code and then in a structured language such as
Pascal, the code would automatically be more understandable than
before, and therefore the extra step of drawing the flowcharts wouldn’t
be needed. Finally, it is argued that one obviously shouldn’t use an
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inherently unstructured technique such as flowcharts in this enlight-
ened age, since the goal is a structured program.

The problem with this analysis is that it is only half right and has
several holes in it. The first hole is the assumption that everyone will
be writing programs in one of the modern (i.e., structured) languages
such as Pascal or the newcomer, Ada. Certainly in the microcomputer
field, the most popular language will continue to be BASIC for a
long time to come. In addition, much work is still most appropriately
done in assembly language. Also, FORTRAN and COBOL are still
powerful forces in the field. This may all change in the near future,
but for now there is no ignoring these truths.

The second hole is the idea that flowcharts are unnecessary when
using a structured language. Flowcharts can give a quick reference
to the overall logic of a program or system that is difficult to obtain
from just a program listing or an algorithm written in pseudo-code,
and often help the programmer to find logic errors in a program
being translated from pseudo-code to flowchart form. Any technique
which makes it more likely to catch bugs is definitely worthwhile.

Finally, the art of flowcharting has been adapted to the more
modern age of structuring, to the point where there is talk of “struc-
tured flowcharts.” The idea is that a few simple rules can transform
flowcharts into a tool that not only follows the philosophies of struc-
tured programming, but also forms a natural bridge between algo-
rithms developed in pseudo-code and an unstructured language such
as BASIC, FORTRAN, COBOL, or assembly language. In this way,
flowcharts are necessary when programming in one of these lan-
guages.

The biggest standing problem with flowcharts, however, is that
the technique is too nonstandard, or at least is too complex for pro-
grammers to take the trouble of keeping their flowcharts standard.
A typical flowcharting template has more than twenty symbols. While
it is a nice idea to give every conceivable process its own symbol so
that the shape of the symbol identifies the process, some processes
are poorly understood by many programmers. In addition, some
companies define symbols differently. Finally, there are simply too
many symbols to remember. As a result, instead of aiding in under-
standing, flowcharts often obscure matters.

The way symbols are used in presenting the logic of a program
is also nonstandard. Many programmers simply fill in the various
boxes with code! This defeats the whole purpose of using flowcharts.
However, most programmers consider flowcharts to be good only
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for documentation purposes. They never think of using flowcharts
as a design tool, and would much rather forget the design phase
altogether. They would prefer instead to begin coding as soon as an
idea for a piece of the program strikes them. To make matters worse,
many authors promote this form of flowcharting, especially in books
on BASIC. What is missed by these so-called experts is that flowcharts
are indeed part of the design phase, not the implementation phase,
and therefore should be language independent. As in presenting the
algorithm in pseudo-code, it should be possible to implement a pro-
gram in any language from a flowchart.

The purpose of this section is to present a more appropriate
approach to flowcharting. First, we will define a flowchart as a graph-
wal representation of an algorithm. This eliminates the problem of want-
ing to present actual code in the various symbols. And since we have
already defined that algorithms should be developed in pseudo-code,
it is easy to see that flowcharts will obviously be based upon a struc-
tured design and will therefore be structured themselves. The fact
that the ultimate implementation might be in an unstructured lan-
guage such as BASIC makes the flowchart indispensable. As we will
see when implementation issues are addressed (Chapter 3), the flow
lines within the diagram make it easier to deal with implementing
the structured concepts of the algorithm in a GOTO-oriented lan-

guage.

Flowchart Symbols

Rather than use the overly rich set of symbols available, we will define
a small subset of symbols to use in flowcharts. Figure 2.4-1 shows
the symbols we will use for the flowcharts in this book. The symbols
represent all the functions necessary for presenting any algorithm.
We have eliminated multiple types of the same function. For instance,
in the original flowchart template, there are several symbols devoted
to various ways of indicating input to or output from the logic.

We will use the single symbol of the parallelogram to show all
types of I/O. When this I/0 symbol is used in a diagram, there will
be exactly one line flowing into it, and one line flowing out of it.
This is in keeping with the “one in—one out” philosophy of structured
programming.

The terminal symbol is used to indicate the beginning or end of
any flowchart. This symbol will contain a name when we wish to
indicate the beginning of a flowchart. There will only be one place
to begin in every flowchart, again in adherence to our “one in—one
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FIGURE 2.4-1:

TERMINAL:
START, STOP, RETURN

PROCESS:
GENERAL PROCESSING

DECISION

CONNECTION

1/0:
INPUT OR OUTPUT

The fundamental set of flowchart symbols.

out” structured programming concept. Likewise, there will be a single
exit from a flowchart, using the same symbol but containing the word
“stop” or “return,” depending on whether the flowchart is for a main
program or a subroutine. There will be only one line coming out of
or going into this box in a diagram.

The process box is used to indicate any processing to be done that
is not represented by another symbol. This will typically be the Eng-
lish statements presented in the algorithm. The keywords of the
algorithm are themselves represented by the diagram symbols and
flow lines and so are never actually presented in the flowchart. There
should be exactly one line flowing into and one line flowing out of
this symbol whenever it is used in a diagram.

The decision symbol is the graphical representation of a binary
condition. There will be one line coming into this symbol, but two
leaving it, representing the two possible results (true and false) of
the condition. This is not in violation of the “one in-one out” rule,
but is instead a special case.

The final symbol to be used is the connector. The small circle is
used to indicate a connection between one piece of the same flowchart
and another. It is necessary because flowcharts have a habit of taking
up a lot of space. Rather than trying to cram all the symbols onto a
single page, and in order to avoid crossing flow lines in the diagram,
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it is usually a good idea to spread the symbols out. The connector is
then used to link together pieces of the diagram that may have been
separated on different pages. In addition, try to keep the diagram
as clean and uncluttered as possible by using connectors whenever
it would be necessary for two flow lines to cross.

Connectors always come in sets, with any number of connectors
indicating where you are leaving from, but only a single connector
for the destination, indicating where the flow is going to be contin-
ued. As aresult, each connector contains a unique “address” of where
to go next. This address can be as simple as consecutively numbering
each connector that acts as a destination, then using that number in
any connector flowing to that destination. However, in a complex
diagram that covers several pages, it is often difficult to follow such
a scheme.

I prefer to use a coding system that helps locate what page a
destination connector might be on. Very simply, each new page gets
its own number. Then, I “number” every destination connector on
a given page with the number of the page and letters of the alphabet.
For instance, the first destination connector on page two would be
labeled “2A,” the second connector “2B,” etc. The first destination
connector on page three would be called “3A.” T use this scheme
even when I know that the destination is on the same page as the
point of departure. Incidentally, I have never found a need for more
than three or four destination connectors on any single page.

Flowcharts for Pseudo-code

Since flowcharts will be a graphical representation of an algorithm,
the easiest way to proceed is to redefine the standard pseudo-code
control structures in a flowchart form. We will define the natural
flow through these diagrams as being straight down or to the right,
unless redirected by arrows on the flow lines. In addition, flow lines
occasionally intersect. This is done instead of drawing multiple lines
into a single box. It also makes the chart easier to change when adding
or deleting boxes. Where two or more lines intersect, arrows will be
used explicitly to indicate the proper flow. Finally, flow lines will
never be allowed to cross without merging; connectors will be used
to avoid this where necessary.

Sequence

Figure 2.4-2 shows how a sequence of statements would be presented
in a diagram, along with the portion of pseudo-code on which the
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|

STATEMENT
#1
I STATEMENT #1;
STATEMENT STATEMENT #2;
#2
| STATEMENT #n
STATEMENT
#n

FIGURE 2.4-2: The flowchart representation of a sequence of statements.

diagram is based. Flow moves from statement #1 to statement #2
.. . to statement #n, just as it would in the pseudo-code. This type
of statement presentation can occur anywhere in a diagram, just as
a sequence of statements can occur anywhere in a piece of pseudo-
code. Placing a BEGIN and END block around several statements
would not change the way the statements are presented in the flow-
chart. There will be other indications that the statements make up
a block or compound statement.

Selection

The IF statement is one of the pseudo-code constructs most often
abused in the development of flowcharts. Instead of being used sim-
ply to indicate alternatives of statements, the decision symbol—the
graphical representation of the IF construct—is often used to indi-
cate a branch in the program logic, much like a fork in a road. This
unfortunately leads to a highly unstructured program when it is
finally coded.

Figure 2.4-3 shows a proper flowchart for an IF-THEN-ELSE
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TRUE

FALSE

STATEMENT STATEMENT
#2 #1

IF CoNDITION

THEN STATEMENT #1

ELSE STATEMENT #2

FIGURE 2.4-3a: Figure (a) shows a style for representing the IF-THEN-ELSE statement. Figure
(b) shows how a dashed box can be used when the statement for the decision
condition won’t fit into the diamond-shaped box.

construct (a). The condition specified in the decision symbol is the
same as the condition that was presented in the pseudo-code. Note
that the flow enters the top of the decision symbol and then takes
one of two alternative paths, depending upon the outcome of the
decision. Also note that the flow merges again after the two alter-
native paths have been completely specified. This is because flow will
be passed on to whatever statement follows the IF-THEN-ELSE.

As in the sequence construct above, having a compound state-
ment in either or both of the alternative paths is no real problem.
It simply means that there will be more than one process box along
a given path. Again, the BEGIN and END keywords don’t have any
specific symbols to represent them in the flowchart. Any block of
statements appears simply as a sequence in the appropriate place in
the diagram.

It is often difficult to fit an entire condition or statement within
the small flowchart symbols. In such a case it is helpful to have a
way of extending the symbol so that more detailed descriptions can
be used. Figure 2.4-3 shows how this can be done by using a dashed
box (b) to present comments or a more detailed specification of some
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FIGURE 2.4-3b

condition. In addition, this box can be used to add comments to any
type of symbol or group of symbols.

As described in section 2.2, The Use of Pseudo-code, it is often
the case that the ELSE portion of an IF statement isn’t required.
Figure 2.4-4 shows how this can be accommodated in the flowchart,
stimply by having no processing of any kind specified within the false
clause. Flow “falls through” the decision box straight on to the next
statement following the IF statement.

The CASE construct is much more difficult to present neatly in
a graphical form than any other construct. This is because of the
numerous possible choices that can be made as to the next statement
to be executed. Figure 2.4-5 shows one approach, using standard
symbols. By using the more conventional symbols that have already
been defined, there is some hope of actually converting this complex
CASE construct into the code of a language that does not have a
CASE statement.

The case selector is specified in the decision symbol, with each
individual case being specified next to the flow line of the path to
be followed if that case applies. Only one path will, in fact, be followed
during the actual execution of the code. This diagram specifies all
possible paths.
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STATEMENT

#1

IF CONDITION

THEN STATEMENT #1

FIGURE 2.4-4: This figure shows a representation of an IF statement without an ELSE clause.

FIGURE 2.4-5: Representing the CASE statement with a flowchart. The form is easily translated
into code for languages that do not contain the CASE statement.

SELECTOR
CASE CASE CASE
Otuerwise 11 #2 #n
STATEMENT STATE#;VIENT STAT:;.;AENT P STAT;ZMENT
n
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Iteration

The WHILE construct is very easily represented with a simple de-
cision box and a loop body of statements. Figure 2.4-6 shows how
this can be presented. Note that the loop flow reenters the flow line
above the decision symbol, rather than drawing the line directly into
the box. This is more a matter of style than necessity. Also, marking
the false flow line out of the decision box as an exit helps to identify
this series of symbols as a loop, not some weird kind of IF statement.
Note too that the loop body is always performed whenever the con-
dition is true. This conforms to the original definition of the WHILE
loop.

Figure 2.4-7 shows the flowchart representation of the REPEAT
statement. The only thing to note here is that the condition causes
the loop to be repeated when it is false, and exits the loop when it is
true.

The FOR type of loop presents a bit of a problem in coming up
with a neat representation. The problem is that the FOR statement
itself represents three distinct actions: an initialization, a condition
test, and an incrementation. The flowchart in Figure 2.4-8(a) has
been suggested by several authors as a clever way of representing all
of these actions in a single symbol. This is simply a combination of
two symbols, the process box and the decision box. The initialization
of the index variable is shown in the top left portion of the box. The
bottom left portion shows the incrementation of the index. The de-
cision portion shows the test criterion for continuing the loop. Note

FIGURE 2.4-6: A representation of the WHILE loop in flowchart form.

STATEMENT

FaLSE | (EXIT)

WHILE CONDITION

t DO STATEMENT
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STATEMENT

REPEAT
STATEMENT
UNTIL CONDITION

FIGURE 2.4-7: The REPEAT loop in flowchart form.

that the loop flow line does enter the side of this box, rather than
entering the flow line above the box as we have seen before. This is
to indicate that the initialization statement of the loop is only per-
formed when this loop is entered for the very first time, not with
each iteration of the loop.

FIGURE 2.4-8a: One method for representing the FOR loop with a flowchart.

TRUE

STATEMENT
FOR i:=x TO y STEP =z

J STATEMENT
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STATEMENT

=itz

FIGURE 2.4-8b: An alternate way of representing the FOR loop in a flowchart, emphasizing the
fact that this loop is based on the WHILE construct.

The only real objection I have to this format is that it is not clear
from the symbols themselves whether the test is done at the top of
the loop like a WHILE statement, or at the bottom like a REPEAT
statement. While this small amount of ambiguity might appear ac-
ceptable, what happens when two programmers who know different
dialects of BASIC attempt to use this same flowchart to implement
a program for their system? They would both undoubtedly use a
FOR-NEXT loop here, even though one might work like a WHILE
loop, and the other like a REPEAT loop. Clearly they can’t both be
right.

Therefore, the only alternative to allowing this ambiguity to exist
is to construct the FOR loop in flowchart form the hard way. Figure
2.4-8b shows the initialization, test, and increment for a WHILE loop
implementation. Figure 2.4-8c does the same for a REPEAT loop
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STATEMENT

ii=i+z

FIGURE 2.4-8c: A FOR-like loop based on the REPEAT construct.

implementation. The biggest problem now is that it is not obvious
from the diagram that we have a FOR loop instead of a WHILE or
REPEAT loop. There is little that can be done to correct this, except
to add a comment to the initialization box explaining that this is a
FOR statement.

Representing References to Modules

Since we have gone to all the trouble to allow the definition of mod-
ules in our pseudo-code, we obviously need some way of representing
a reference to another module within the flowchart. Each module
will have its own flowchart, just as it has its own algorithm already
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defined. The module reference in the pseudo-code was very simple.
All we had to do was write down the name of the module we wanted
executed. We defined that such a reference caused the execution of
the currently executing, or “calling,” module to be suspended, and
the “called” module execution to begin. When this called module
had completed its execution, it returned control to the calling mod-
ule, to the statement following the reference.

We will follow the same conventions within the flowchart for
module referencing. We will simply specify the name of some other
module within a process box, thus invoking and passing control to
the beginning of the module referred to. In order to make the mod-
ule reference more obvious, the box referring to another module is
given double sides. In addition, the beginning terminal box for the
called module has double sides. Finally, a module that is called will

FIGURE 2.4-9: An example of a flowchart for the Find-the-Largest algorithm.
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have “return” in its terminal ending symbol instead of “stop.” This
indicates that control passes back to the calling routine following
completion of the logic for the called module.

Figure 2.4-9 shows an example of a flowchart for the Find-the-
Largest algorithm developed in section 2.3. Note the use of a con-
nector to complete the loop of the FOR construct. Since this routine
is used as a module in the Selection-Sort algorithm, the beginning
terminal symbol is double-sided and the ending terminal symbol says
“return.” Finally, the FOR loop has been identified by the use of a
comment box at the initialization statement.

Figure 2.4-10 shows the flowchart for the Exchange algorithm.
Note the use of the pseudo-variable TEMPORARY. Also notice that,
even though we explicitly state the parameters that will be passed to
this module in the pseudo-code, there is no mechanism in the flow-
chart for showing parameters.

Figure 2.4-11 shows how the two modules above are referenced
from another flowchart. When we reach the Find-Largest box in the
Selection-Sort flowchart, we would move to the Find-Largest flowchart,
following it until we are led to the “return.” We would then continue

FIGURE 2.4-10: A flowchart for the Exchange algorithm.
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SELECTION
SORT
I FORJ:<# ! T -7
ELEMENTS INLisT b — — | ELEMENTS
_ DowntOl | IN LisT

RETURN

(ExIT)

TRUE

FIND
LARGEST

EXCHANGE

|
J:=J-1

FIGURE 2.4-11: A flowchart for the Selection-Sort algorithm.

following the Selection-Sort flowchart with the box that indicates call-
ing the Exchange module.

Finally, Figure 2.4-12 shows the flowchart for the Sort-a-List pro-
gram. After the call to the Selection-Sort module, the execution con-
tinues with the FOR loop, which outputs the sorted list.

These flowcharts will be used to actually implement the code for
this program. Note that there is very little in the way of “language
specific” statements in the flowcharts. Therefore, it should be easy
to implement this logic in nearly any programming language. In
addition, the flowcharts provide one more level of documentation
for the system. The only thing that you have to remember is that
the flowcharts must be changed whenever the logic of the program
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SORT A
LisT

FORI:=1 ,
ITO # ELEMENTS
| INLisT
I:=1+1
FaLse | (ExIT)
SELECTION
SORT
FORI:= 1 |
lTO#ELEMENTSr - [:=1
| INLisT

I:=1+1

THE LIsT

FaLSE | (ExIT)

Stop

FIGURE 2.4-12: A flowchart for the Sort-a-List algorithm.

is changed, for instance during maintenance to add a function or
correct a bug. Many programmers avoid this little chore. However,
once in the habit of using pseudo-code and flowcharts as design tools,
you will automatically begin with making modifications at this level
before a single line of program code is changed.




3 I Structured

Programming

I 3-1 INTRODUCTION

Structured programming is concerned with improving the program-
ming process through better program organization and better pro-
gramming notation. The main concern in the early days of structured
programming was the spiraling costs of program maintenance. As a
result, the improvements most sought after were increases in pro-
gram correctness and maintainability, rather than any direct im-
provement in programmer productivity or program efficiency. This
led to a greater concern for the clarity of programs, since greater
clarity would make it easier for the maintenance programmer to do
the job.

The term structured programming got its start as a description
of a style of programming that avoided GOTO statements like the
plague. Indeed, the early pioneers in this area called the technique
“GOTO-less programming.” It was felt, and attempts were made to
prove, that the vast majority of bugs in any program could be directly
related to the use of GOTO statements.

However, since programming had always been done using GO-
TOs, structured programming was initially greeted as heresy. To
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make matters even worse, the proponents of structured program-
ming began to talk about “structured programming languages” to
replace the dinosaurs—FORTRAN, COBOL, and assembly lan-
guage. There was not initially a lot of enthusiasm, either from com-
panies or programmers, for the new methodology, or for the antic-
ipated cost of converting to the new ideas.

Initially, the new methodology revolved around ways to facilitate
correct and clear descriptions of data and control structures within
a “program.” In particular, the control structures of IF-THEN-ELSE,
WHILE, and REPEAT-UNTIL were introduced as being more nat-
ural expressions of what actions a programmer needed performed
than was the old construct of IF-GOTO. Programmers were taught
to express the design of their programs in this new “language,” which
evolved into what we now call pseudo-code. This was used for the
design of algorithms only, since no popular programming language
yet existed that contained these new control structures. It wasn’t until
many years later that languages such as Pascal emerged from the
research labs, and older languages such as FORTRAN were rebuilt
to be “structured.”

This meant that the wonderful, new, structured constructs had
to be translated into obsolete languages that only had the IF-GOTO
construct. As it turned out, this was not particularly difficult initially.
The structured control constructs could all be simulated using the
more primitive statement. However, the ultimate goal was to banish
the GOTO from the programmer’s world forever. Until the new
structured languages were able to become popular, this was an idle
hope. Today, most programmers can select from a wide variety of
structured languages.

The most interesting thing about this bit of history, however, is
that the concept of structured programming actually started out as
a design methodology. Today, structured programming can achieve
the long-sought goal of GOTO-less programming simply by using
the structured constructs available in most modern programming
languages. However, the actual programming part of a program’s de-
velopment becomes primarily a mechanical translation of the algo-
rithm’s pseudo-code.

In a sense, structured programming is the culmination of the
design techniques previously discussed. It means adhering to the
concepts of modiilarity and structured style begun during the de-
velopment of the algorithms. While it might be difficult to take a
very carefully structured algorithm and implement an unstructured
program from it, it is certainly possible.
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This chapter discusses the stylistic concerns of how to translate
the structured design into appropriate code.
Disadvantages

There are several disadvantages to what might be called “strict” struc-
turing, i.e., following every rule of the methodology blindly and
precisely. This isn’t to say that strict structuring should always be
avoided. As you will see, there are many more advantages to the
techniques than disadvantages. However, most of the rules given are
really rules of thumb, guidelines to be followed as long as it makes
sense to do so.

The main disadvantage to the structured techniques is that they
require more initial time to design and implement the software. This
was probably the biggest obstacle to be overcome by proponents of
the methods trying to convince companies that there was going to
be a big payoff further down the line. Perhaps even more difficult
to convince were the programmers themselves. Their entire thinking
had to be reworked to accept this new life cycle for programming.
It is also difficult to accept the long-term benefits of such a technique
without any type of feedback. Previously, feedback revolved around
watching the code grow and execute, even if such execution was full
of bugs.

The second most frustrating disadvantage is that structured tech-
niques often produce code that is less efficient than could otherwise
be achieved. This can result from, for instance, subroutines, created
for the sake of modularity, that are never called more than once. In
most applications, the increase in speed that might be achieved by
not following structured techniques is negligible, and won’t be no-
ticed by users.

There are obviously applications where speed is extremely im-
portant, either because the application is time sensitive (e.g., an au-
topilot computer on an airplane) or because the amount of code that
must be executed or the amount of data that must be manipulated
makes the function noticeably sluggish. For instance, a routine to
sort data might work quickly (on the order of seconds) for one hundred
names and addresses, but take days to execute when the number of
items to be sorted approaches one hundred thousand. In these cases,
where the execution speed becomes important, it is usually better to
attempt to optimize (make faster) a structured program than to im-
plement an unstructured program in an effort to create one that is
fast to begin with.
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A third disadvantage to the structured techniques is that they
sometimes may result in repeating code in a program. This may
appear to be a redundancy, but generally the repeated code is un-
related to its duplicates.

Finally, structured programs have a tendency to have more code
and require larger data areas than unstructured ones. Again, this
trade-off is usually not very limiting. However, when memory space
is limited, other types of optimizing may need to be done.

Advantages

The disadvantages discussed above are usually not overwhelming
and can most often be counteracted by the advantages of using struc-
tured techniques. To begin with, the overall code of a structured
program is generally more efficient than unstructured code because
the overhead involved in branching can be minimized. This is achieved
by eliminating GOTOs as much as possible. GOTOs are overhead
because they perform no real work but require significant amounts
of computer time to perform.

Next, while the structured techniques require more time in the
development phase of a project, the use of such techniques invariably
decreases the amount of time spent in the testing and debugging
phase. Isolating and correcting errors is greatly simplified.

Finally, an even larger payoff is achieved by reducing the main-
tenance effort significantly. Adding new features is easier for a struc-
tured program, and the readability of the code makes it more likely
that the maintenance programmer will understand it. Any start-up
costs of converting to structured programming techniques are ulti-
mately overridden by these savings.

I 32 IMPLEMENTATION GUIDELINES

Many of the guidelines that will be presented are not strictly a part
of what is currently called structured programming. They fall more
into a category of “good programming practices,” and often are
simply rules of thumb applied whenever it seems practical to do so.
Some of the guidelines should strike you as common sense. Others
are dictated by peculiarities of a programming language like BASIC.

If you have followed the formulae given so far in this book, you
should be ready to begin coding your program. This can be done in
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Modules

a top-down fashion, bottom-up, or with a combination of the two
methods. As discussed in detail in Chapter 5, Program Testing and
Debugging, each approach has its merits. You are probably wisest
simply to continue to use whatever approach you used during the
design phase of the project. While this is not in any way a require-
ment, it is perhaps the most natural approach.

In this chapter we are (finally!) going to be concerned with details
of the implementation. In particular, this section discusses rules for
coding that have evolved from the structured programming prin-
ciples. In addition, it offers tips for making the coding process sim-
pler and less error prone. Although, after following the methods
outlined previously in this book, the actual coding becomes a some-
what mechanical task, errors do crop up in the translation, just as
they invariably do when translating natural languages.

We will first look at modules. While modules have already been
defined during the design phase, further care must be taken when
converting these designs into actual code. In addition, the term mod-
ule has a slightly different connotation when dealing with the actual
coded program. It usually refers to a subroutine, specifically one that
has been compiled separately from the rest of the program. This
would be the case, for instance, when dealing with a library of rou-
tines, as discussed later in the Libraries section.

However, the term can also be applied to any collection of state-
ments that follow a particular philosophy. This philosophy is de-
scribed in detail below, and includes principles concerning how code
is formed into coordinated collections. These principles deal pri-
marily with the functions that the module performs and the proper
interfacing of modules, and are more detailed than what was de-
scribed in section 1.3, Modular Design, because we were not con-
cerned with such details during the preliminary design. At that time,
we were only concerned with defining very high-level functions.

The principles described are applied, in some degree, to every
collection of code in a program. Although there are some feelings
among professionals that the size of a module (i.e., the number of
lines of code) should be kept to a particular maximum, the other
principles that are discussed are usually applied not only to subrou-
tines, but also to individual control structures as well as to the pro-
gram as a whole. This is vital for ensuring consistency in the code.

In fact, the use of pseudo-code for developing algorithms is a
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direct derivative of many of the philosophies described below. You
should be able to easily recognize how pseudo-code plays this role
for each of the principles discussed below.

Uni-Functionality

The first principle is that each module should have a single, well-
defined purpose. This means that the module should perform only
a single function. This is easily understood for the lowest level mod-
ules that were defined during the preliminary design. It is perhaps
more difficult to understand for the higher-level modules, since they
are responsible for all of the functions defined below them. However,
that is precisely the one function that these higher-level modules
have—to orchestrate the functions below them.

This is not as capricious as it might first appear. Recall that during
the preliminary design phase we had defined a module as a portion
of the program, such as a block of code or a subroutine, that performs
a specific function, and that we had used HIPO charts to break the
program down into its functional components. The blocks defined
using this technique should naturally adhere to this uni-functionality
principle.

One in—One out

"This principle has to do with how the code of a module is interfaced
with other blocks of code. Since it deals with details of the code, it
was not discussed during the preliminary design.

The one in—one out principle requires that there be only one way
into a module, and only one way out. This makes it much simpler
to trace the code manually, as will be required during the testing
and debugging phase (see Chapter 5, Program Testing and Debug-
ging). In addition, it preserves our previous principle of uni-func-
tionality by making it impossible for the same section of code to be
used in more than one way.

The most notorious example of multiple paths in and out of a
block of code are BASIC subroutines. Since there is no defined head
statement identifying the first statement in a BASIC subroutine, the

“program can call the routine using any of the routine’s line numbers.

For instance, consider the subroutine shown in Figure $.2-1. Can
you determine the function of this routine? It appears that it will
add ten numbers entered by the user. But what if the call to this
subroutine were GOSUB 620, instead of the assumed GOSUB 610?
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610 TOTAL = O
620 FOR I = 1 TO 10
630 INPUT "ENTER A NUMBER: "; X
640 TOTAL = TOTAL + X
650 NEXT I
699 RETURN

FIGURE 3.2-1:

A subroutine that appears to sum up ten new numbers.

This causes the subroutine to perform an entirely different function,
namely adding ten numbers to the previous TOTAL.

The same is true for the RETURN statement with regard to the
“one out” principle. In BASIC, there can be more than one RETURN
statement in a subroutine. In addition, the RETURN does not even
identify the end of the subroutine.

Such confusing code can make debugging a program difficult at
best. As a result, the quality of a program can only be regarded as
significantly lowered by such lapses in structure. In languages such
as BASIC where the structure is essentially nonexistent in the lan-
guage itself, the programmer will have to impose a structure. Sug-
gestions for doing this with BASIC are discussed later in the Data
Structures section.

Module Size

One of the quickest indicators of whether you have followed the
modularity philosophy sufficiently is the size (i.e., the amount of
code) of the modules you have defined. It should be possible to
estimate the size of each module based upon its algorithm. Occa-
sionally, however, it may not become apparent that the size of a
module is out of hand until the module is coded.

A general rule of thumb is that a module should be limited to
approximately one hundred lines of executable code. Modules that
are larger than this can usually be broken down further into sub-
modules. This is a reasonable size for a module because it will gen-
erally fit on two pages of a source code listing, meaning you won't
need to flip pages back and forth while reading through the code.
In addition, the smaller the module, the more likely it is that you
will be able to understand all of the code. The module becomes more
readable and, therefore, more understandable. Anything that makes
the code more readable is definitely an advantage.
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FIGURE 3.2-2:

Data Structures

Itis wise to isolate all things dependent on a particular data structure
(an array or file record) to as few modules as possible. This makes
it far easier to change the data structure’s format should the speci-
fications of the program change.

For instance, consider a record format for a particular file. If a
new field must be added to the record (e.g., the extra four digits of
the new nine-digit zip code), having the fields of the record used in
a limited number of modules makes the addition much less painful.

This leads to another sound practice for dealing with files. When
possible, create separate modules for doing input and output for a
particular file, and use these modules only to perform I/0 on that
file. This makes certain that the record format is handled correctly
every time I/O is performed on that file. This is especially important
in a language such as BASIC where there is no required record
format for a file and, therefore, no mechanism to detect any violation
of the file’s format.

Creating I/O modules works well with inputs and outputs from/
to the user when a particular type of input or output must occur in
more than one place within the program. Figure 3.2-2 gives an ex-
ample of an output subroutine that generates a line of asterisks on
the screen. A call to this subroutine can be made any time this action
is desired. Care must be taken, however, not to create a module that
causes more trouble than it avoids, as is discussed in the following
section.

Duplicate Functions

In creating modules, one object is to eliminate duplicate functions
from the program, replacing the code of the duplicates with calls to

A BASIC subroutine that generates a line of asterisks.

600 REM Output a blank line, a row of asterisks,
605 REM and another blank line

610 PRINT

620 FOR 16% = 1 TO 80

630 PRINT "#m.

640 NEXT 16%

650 PRINT

660 PRINT

699 RETURN
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a module that performs the common function. However, every case
of duplicate code should not necessarily be eliminated. Separating a
“random” collection of code into a module simply because it would
be repeated in another section of the program is not a good idea if
that code does not perform a specific, definable function that is
common to the two areas of code. The problem is that separating
the code out into a subroutine creates a dependency on this code at
each place where a call to the subroutine is made. If there were really
no relationship between the two portions of the program other than
the repetition of several lines of code, trouble occurs when one of
the sections needs to be changed during maintenance. If you change
the subroutine, the other section of code—the one not requiring the
change—is also affected.

Consider the code in Figure 3.2-3. This program segment per-
forms two functions. First, it reads in a list of numbers and calculates
their sum. Then it reads in another list of numbers and calculates
the product. There appears to be an obvious duplication, since the
control structures defined are identical in both parts of the program.
There are only some slight differences in the use of variables. Wouldn’t
this all be easier to code, therefore, by writing a single subroutine
that is called twice, once for calculating the sum, and another time
for calculating the product?

Figure 3.2-4 shows how a subroutine can be devised which gives

FIGURE 3.2-3: A program segment that appears to have a duplicated function that could be
separated out into a separate module.

500 INPUT "How many items to be added? ", NITEMS
510 TOTAL = 0
520 FOR I = 1 TO NITEMS
530 INPUT "Enter an item: ", ITEM
540 IF ITEM <=z O THEN
PRINT "#¥¥¥ Ttem must be greater than zero":

GOTO 530
550 TOTAL = TOTAL + ITEM
560 NEXT I
570 PRINT
580 INPUT "How many items to be multiplied? ", NITEMS
590 PRODUCT = 1
600 FOR I = 1 TO NITEMS
610 INPUT "Enter an item: ", ITEM
620 PRODUCT = PRODUCT ¥* ITEM
630 NEXT I

640 PRINT TOTAL, PRODUCT
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520 WHAT$ = "added"

530 GOSUB 910

540 TOTAL = RESULT

545 PRINT

550 WHAT$ = "multiplied"
560 GOSUB 910

570 PRODUCT = RESULT

580 PRINT TOTAL, PRODUCT

910 PRINT "How many items to be ";WHAT$;" ";
920 INPUT NUM
930 IF WHAT$ = "added" THEN
RESULT = O
ELSE RESULT = 1
940 FOR I = 1 TO NUM
950 INPUT "Enter an item: ", ITEM
960 IF WHAT$="added" THEN
RESULT=RESULT + ITEM

ELSE RESULT=RESULT ¥ ITEM
970 NEXT I
979 RETURN

FIGURE 3.2-4: A subroutine can be used to eliminate the apparently redundant code in Figure
3.2-3. This code provides exactly the same functionality as the previous code.

the exact same functionality of the code in the previous figure. The
question we are faced with is whether or not this is a good idea. It
seems to save code by eliminating a duplicate function, although in
a different way than that shown in Figure 3.2-2.

The question of whether this constitutes a duplicate function or
Just duplicate code cannot be easily determined. There are two rules
of thumb, however, that can usually be applied for making this de-
cision. The first is that the newly created subroutine should adhere
to the guidelines of a module. In this case, the applicable consider-
ation is: Does this routine have a single function that is easily defin-
able? The answer is no, since the routine either calculates a sum, or
calculates a product, depending on how it is called.

The second heuristic that can be applied is that a change in the
requirements of one of the functions should not adversely affect the
other function. For example, what would happen if we wanted to
restrict the product to numbers greater than zero, but wanted to be
able to sum any numbers? This is clearly a problem in this example,
and is evident from the special code required in lines 930 and 960
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of the subroutine to differentiate between using this code for cal-
culating a sum or a product.

These difficulties reveal that this subroutine has eliminated du-
plicate code but has not created a module to perform a common
function.

Clever programming tricks such as this may look neat, but they
generally cause more trouble than they are worth, and ultimately
wind up costing the programmer more time than they supposedly
would save.

Libraries

Once you have taken the trouble to create sophisticated routines for
one program, it seems a shame to have to create entirely new routines
for other programs that perform the same types of functions. This
“reinventing the wheel” syndrome can be overcome by creating a
library of routines that would be useful in more than one situation.

Large-scale computer companies have been doing this for many
years. For instance, IBM has a package called the Scientific Subrou-
tine Package (SSP) that contains dozens of modules that can be called
from many different languages to perform standard scientific cal-
culations. A programmer could create a program that would call this
SSP in a special way to perform one of its functions on data that the
program would supply. This saves the programmer much work in
writing and rewriting these functions every time he needs them.

Creating such a generic package of routines is extremely com-
plex. However, it is surprising how many times you want to include
a similar function in more than one program. In addition, it isn’t
nearly as difficult to create routines for use by a single language as
it is to make the routines accessible to many languages.

For BASIC, it is possible to set up a routine in its own file. When
you want to use this routine, you would copy the file into the program
you want to use it in. This is generally done with a command such
as MERGE, which copies one BASIC program file into another, and
allows you to use the code that was copied as if it were originally a
part of your program.

This merging can be done when you are creating the source code,
making the merged code a permanent part of your program, or it
can be done each time your program is executed. Figure 3.2-5 shows
how this can be done using Microsoft BASIC on the DEC Rainbow.
In (b) is the routine that is to be copied into the program, shown in
(a). The subroutine (b) must have been saved with the “A” option,
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10 CHAIN MERGE "DUMMY.BAS",20
20 PRINT "MERGE DONE"

30 GOSUB 100

40 PRINT A,B

50 STOP

999 END

a

100 A=100

110 B=5

120 PRINT "END OF DUMMY"
130 RETURN

FIGURE 3.2-5aand b: An example of the CHAIN facility in Microsoft BASIC. This is one method

used to create a module library.

which stores the BASIC program file in ASCII form. Line 10 in (a)
performs the copy of the routine which was stored with the name
“DUMMY. BAS”. The 20 at the end of line 10 tells what line exe-
cution should continue on after the merge is completed.

Figure 3.2-6 shows the results of the merge, and the output
generated by this example. After the merge is completed, BASIC

FIGURE 3.2-6: The results of the execution of the BASIC code in Figure 3.2-5a. The listing shows
the result of the merge, which is done when the code in Figure 3.2-5a was RUN,

and the output generated by the execution.

10 CHAIN MERGE "DUMMY.BAS",20
20 PRINT "MERGE DONE"

30 GOSUB 100

40 PRINT 4,B

50 STOP

100 A=100

110 B=5

120 PRINT "END OF DUMMY"

130 RETURN

999 END

MERGE DONE
END OF DUMMY
100 5
Break in 50
Ok
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var a, b: integer;

{$I #5:DUMMY}

begin
dummy ;
writeln(a,"
end.

a

procedure dummy;

1 2 1:d
2 2 1:d
3 2 1:d
4 2 1:d
5 2 1:d
6 2 2:0
7 2 2:1
8 2 2:1
9 2 2:1
10 2 1:0
11 2 1:0
12 2 1:0
13 2 1:0
14 2 1:0
15 2 1:1
16 2 1:1
17 2 :0

End of Compilation.

C

',b)

Pascal Compiler IV.1

OMNOOCOO0OO~TFEFOOWW — — -

c5s-4

program chain(input,output);

begin

a := 100;

b -4 5;

writeln('end of dummy')
end;
b

8/23/84

program chain(input,output);
var a, b: integer;
procedure dummy;
begin

a := 100;

b := 5;

writeln('end of dummy')
end;
begin

dummy ;

writeln(a,' ',b)
end.

FIGURE 3.2-7a, b, and c: An example of the use of the UCSD p-system include facility. The text
enclosed in the brackets ({}) in (a) is a compiler instruction (called a pseudo-
comment) to find the file called #5:DUMMY and copy the text in that file into
this program. The text of this file is shown in (b). The result can only be seen by
looking at the compiler listing, shown in (c). We can see here that the file was
copied into the original source code, without any trace that it was ever a separate

file.
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Variables

treats the new code as if it had been in the program to begin with.

In Pascal, a similar facility exists to copy code into a program,
but it must be done at compile time, not execution time. The result
of using this include facility is similar to that shown in the above
BASIC example, except that copying occurs only once, during com-
pilation, not every time the program is executed. Figure $.2-7 shows
an example of the include mechanism using UCSD Pascal.

Another mechanism for obtaining similar results is called linking.
This requires a special program called a linker, which is included
with most compilers. The function of the linker is to create a single
executable program for multiple, separately compiled modules. Such
a facility is different from the include mechanism in that the code
that is linked has already been compiled, and so is in machine lan-
guage.

This makes it possible to use sophisticated functions without hav-
ing to worry about the source code for these functions. It also means
that, when the module that is being linked with your program is
changed some time in the future, you only have to relink the new
version with your already compiled program, not recompile the en-
tire thing.

Obviously, great care must be taken when using such a facility,
since rigorous syntax considerations apply. However, much time can
be saved by creating files with generic routines to be copied into or
linked with new programs. The types of functions that you would
want to include in a library will depend greatly on the types of
applications you personally develop. Examples are scientific routines,
sorting routines, and specialized input or output routines. The rou-
tines do not necessarily need to be completely ready to execute, as
in the examples above. Instead, they could be copied into the source
code of your program and there customized for the particular ap-
plication required in that program.

Second only to the unrestricted use of GOTOs, the misuse of vari-
ables and their names probably causes more bugs than any other
problem. It undoubtedly stems from variables being somewhat un-
obtrusive in a program filled with control structures, data structures,
files, etc. However, trying to locate a misspelled variable name can
be more frustrating and time-consuming than anything that might
go wrong with these other constructs. Following are some guidelines
for dealing with variables.
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Descriptive Names

One of the easiest traps to fall into when coding a program is to use
very simple variable names. Perhaps we have been somewhat brain-
washed into using names such as X and Y by our experience in
mathematics, where we must often deal with equations of the form
ax’ + bx + ¢ = 0. Even in dealing with the infamous “word problem”
in algebra, we were taught to use single letter names for variables.
At best, we were allowed to use something like X.

The biggest problem most students have with algebra, however,
seems to stem from not being able to make the mental connection
between a variable named X and its meaning. This comes as little
surprise, since the same variable named X is often used in every
problem to be solved. As a result, many people have tremendous
difficulty using algebraic techniques, even though using them would
make many tasks much simpler.

This problem is magnified when dealing with programming, where
dozens of variables may be used in a single program. How could
anyone consistently remember that in one program X stands for a
temperature, while in another program X is a length?

The way out of this mess is obvious. The name of the variable
should in some way indicate its purpose. This means that if a variable
is needed to hold the value of a temperature, a reasonable name for
that variable would be TEMPERATURE. If there needs to be more
than one variable for temperature, it makes sense to call such vari-
ables TEMPERATURE!] and TEMPERATUREZ2. In this way, it is
(supposedly) obvious when reading the code exactly what the pur-
pose of each variable is.

In the recent past, it has been impossible to name variables with
descriptive names because the languages limited the length of all
names quite severely. In the earliest versions of BASIC, for instance,
names could be only two characters long, the first being a letter, and
the second being a number, as in T1 and T2.

Fortunately, most modern languages have overcome this defi-
ciency, and allow names to be as much as forty or more characters
in length. Unfortunately, not all languages currently being used allow
longer names. There are many versions of BASIC and FORTRAN
on large computers that limit names to between two and six char-
acters. In Applesoft BASIC on the Apple Ile, only the first two
characters of a name count for uniqueness of the variable name,
although names can be longer than two characters.

Even when variable names can be long enough to be descriptive,
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they can also present a problem when they get to be too long. Con-
sider

NEW.BALANCE.ACCOUNTS.PAYABLE
and
NEW.BALANCE.ACCOUNTS.RECEIVABLE

as two names in the same program. These are nicely descriptive
names. But if they appear more than a couple of times in the pro-
gram, you’ll quickly get tired of writing them out.

The usual remedy to this is to use abbreviations. Thus, you might
end up with

NEW.BAL.AP
and
NEW.BAL.AR

instead of the names given above. These are moderately descriptive,
even for someone who is not intimately familiar with the program.
Once a newcomer is told what these names stand for (e.g., in the
comments), he or she should have little trouble remembering their
purpose.

There is a danger in using abbreviations, however. In the above
example, the danger is that one of the names will be misread by a
programmer skimming the program’s listing. The two names look
too much alike. This could lead to a lot of confusion and lost time.
Even worse, the listing might be a little obscure because of a bad
printing. For instance, if the listing were printed using a dot matrix
printer with low resolution, the final R in NEW.BAL.AR might come
out looking like a P.

The second problem is that an abbreviation might be misunder-
stood, even if it is explained clearly in comments elsewhere in the
program. A programmer might not bother to look up the meaning
of an abbreviation for a variable whose name seems familiar. For
instance, if we were to use the name TEMP in a program, a pro-
grammer might assume that this is an abbreviation for “tempera-
ture,” when in fact it stands for “temporary.” This confusion could
lead to many hours of extra work.

There is not an easy solution to this dilemma. Names must be
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long enough to be clearly understood. In addition, you should avoid
using names that are too similar to one another. Finally, all names
should be fully described in the documentation of the program (this
is discussed in more detail in section 3.3, Program Style and Chapter
6, Documentation).

Multipurpose Variables

One of the most devious things that a programmer can do with a
simple variable is to use it for more than one purpose within the
same program. For instance, imagine that the programmer uses the
variable TEMP first as a temperature. Later in the program, when
he no longer needs a variable to hold a value for a temperature, he
reuses the name TEMP to hold a temporary value.

This sets up any maintenance programmer for a lot of misery.
Imagine reading along in this program, knowing that the variable
named TEMP holds a temperature value, and suddenly running
across a line of code where TEMP is used to hold a temporary value,
such as in

800 LET TEMP = X
SIO LET X =Y
820 LET Y = TEMP

You would probably wonder what relationship a temperature has to
variables X and Y! The correct answer is “none.” This type of switch
in the meaning of a variable leads to confusion later on, whether or
not the original programmer is doing the maintenance.

The rule here is that a variable name should only be used for
one purpose throughout the entire program. For instance, once the
name TEMP has been used to mean a temperature, another name
should be selected for the temporary variable. While this might mean
using additional space in the program to hold variables that are no
longer being used, the amount of actual waste is negligible.

This is generally not a problem if the previous rule about de-
scriptive names is followed carefully. However, it is still tempting to
reuse some common variable names. For instance, I generally give
loop control variables names such as I or J. These names can be
reused in later portions of the program, as long as they are used
strictly for loop control. The example in Figure 3.2-3 shows this with
the variable 1. As long as the number of exceptions to this multi-use
prohibition is kept reasonably small, there are usually few problems.
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Real (Floating Point) Values

In most languages, there is a complex distinction between integer
variables and variables that may contain fractional (decimal) values.
These latter values are called floating point values in BASIC and
real values in Pascal. The way variables of this type are stored differs
from language to language (and sometimes version to version). In
general, the internal representation of such variables follows a pat-
tern that includes a sign bit, a mantissa, and an exponent. A fairly
standard length for a floating point number in memory is 32 bits,
or 4 bytes.

The sign bit simply indicates whether the value currently stored
in this location is positive or negative. If the bit is 0, then the number
is positive; a 1 indicates negative.

The mantissa is a special format of the actual number being
stored. A typical size for the mantissa might be 24 bits, giving the
maximum value of the mantissa as 33554431 decimal. The special
format is called a normalized form, meaning that the decimal point
is understood to be to the left of the mantissa. This makes the number
being stored 0.33554431, rather than as 33,554,431.

It is the third part, the exponent, that gives the floating point
value its large range. A typical exponent will be 7 bits long, 1 bit for
a sign (positive or negative exponent) and 6 bits for the actual value
of the exponent. This means that the maximum positive exponent
would be 63, while the maximum negative exponent would be 64.

The exponent is used to determine exactly where the decimal
point should be placed within the actual number. The actual value
of the number being stored is calculated as

0.mantissa * [(Qexponent

For example, if the mantissa being stored were 12345, and the ex-
ponent were + 3, then the value being stored is

0.12345 * 10*?

which is 123.45 in decimal. If the exponent had been — 3 instead of
+ 3, then the actual value would be 0.00012345, since 10 raised to
the power of a negative exponent moves the decimal point to the
left. Note that the exponent moves to the right or the left exactly
the number of places indicated by the exponent.

It is not important that you know exactly how this works. What
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FIGURE 3.2-8:

is important is that you understand two details of the mechanism.
First, the fixed lengths of the mantissa and the exponent determine
the magnitude of the value that can be stored. With the above format,
the largest value that can be stored is 0.33554431 * 10%. The smallest
number is 0.33554431 * 10-%. This means that, while the largest
and smallest values might be dozens of digits long, the maximum ac-
curacy of any number is at most eight digits! As a result, any value that
requires greater accuracy is truncated when it is stored in memory,
changing the value.

For an example of how this causes trouble, refer to Figure 3.2-
8. The statements in lines 10 through 50 assign double precision (a
floating point number stored in 8 bytes instead of the usual 4) num-
bers, indicated by #, into single precision (4-byte floating point)
variables. When the values of these single precision variables are
later printed out, you can see how they have been changed by trun-
cation. The best precision that can be achieved in a single precision
variable with this version of BASIC is seven digits. All other digits
are effectively lost.

Second, another type of precision loss is also occurring in this
example. Note the difference in the output values for X2 and X3.
Then look at X3 and X4. Even though the difference between X3
and X4 is really greater than that between X2 and X3, the output

An example of loss of precision when assigning a number with many decimal
places to a single precision variable in BASIC. The bottom of the figure shows
the output generated by running the code. Compare the values that were output
with the values assigned to the variables in lines 10 through 50.

9876543014

9876543034

9876543044

9876543994

987654U9G#

60 PRINT "X1 = "; X1, "X2 = "; X2
70 PRINT "X3 = "; X3, "X4 = "; X4
80 PRINT "X5 = "; X5

90 END

(2] w
o o
>< bl
Ul Ew
woononon

nou

X1
X3
X5

9.876543E+08
9.87654U4E+08

9.876543E+08 X2
9.876544E+08 X4
9.876546E+08

fHonon
non
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FIGURE 3.2-9:

values show only a difference between X2 and X3, but not between
X3 and X4. In addition, note the large difference in the output value
of X5 in comparison to the value assigned to it in line 50.

This inaccuracy is due to another type of error that occurs when
dealing with floating point values. The problem is that values are
stored in binary, not in decimal. We will not go into the details of
the mechanism for the conversion between binary and decimal, or
vice versa. It is sufficient to know that this conversion is not exact
when converting decimal fractions to binary. Some decimal values
cannot be precisely represented in binary. As a result, these values
suffer from approximation error when they are reconverted to dec-
imal for, say, outputting.

Consider the program and its output in Figure 3.2-9. In this

An example of the inaccuracy of floating point numbers.

10 COUNT = 0
20 FOR I = 0 TO 1 STEP .01

30 PRINT I,

40  COUNT = COUNT + 1

50 IF COUNT = 4 THEN PRINT: COUNT=0

60 NEXT I

0 .01 .02 .03

.04 .05 .06 .07
7.999999E-02 8.999999E-02 9.999999E-02 .11

L2 .13 1k .15

.16 17 .18 .19

.2 .21 .22 .23

. 2400001 .25 .26 .27

.28 .29 .3 .31

.32 .33 .34 .3499999
.3599999 .3699999 . 3799999 . 3899999
.3999999 . 4099999 . 4199999 . 4299999
. 4399999 . 4499999 . 4599998 .4699998
. 4799998 . 4899998 .4999998 .5099998
.5199998 .5299998 .5399998 .5499998
.5599998 :5699998 .5799998 .5899998
5999998 .6099997 .6199997 .6299997
.6399997 .6499997 .6599997 .6699996
.6799996 .6899996 .6999996 .7099996
.7199996 .7299996 .7399996 . 7499996
.7599996 .7699996 . 7799996 . 7899996
7999995 .8099995 .8199995 .8299995
.8399995 .8499995 .8599995 .8699994
.8799994 .8899994 .8999994 .9099994
.9199994 .9299994 .9399994 .9499994
.9599994 .9699994 .9799994 .9899994
.9999994
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elementary BASIC program, all values between 0 and 1 are printed
out by increments of 0.01. Notice what happens to certain values.
The value 0.08 cannot be represented accurately in binary, so the
resulting value of 7.999999E-02 is output. In looking at all these
values, it is somewhat shocking to see that most cannot be represented
precisely. In some of the values, the loss of precision is quite dramatic.

Figure 3.2-10 shows a similar result for a program written in
UGSD Pascal. While the values here are more precise than in the
BASIC example, approximation error still occurs and can, therefore,
cause much havoc.

These types of errors can also be introduced when combining
integers and real values in the same expression. An example is the
expression

LET X = 1/3.0
in BASIC, or
X := 1/3.0

in Pascal. The language must convert any integers into floating point
representations before the actual calculations can be performed. In
this case, the 1 is an integer and must be converted to a floating
point representation before the division can be performed. This
conversion routine can introduce additional errors, resulting in fur-
ther loss of precision.

Unless specific steps are taken to increase the preciston of a float-
ing point variable, its accuracy will be limited in this way. In BASIC,
all numeric variables are stored as single precision floating point
values unless they are explicitly identified as some other type. The
other three standard types of variables are strings, integers, and
double precision floating point. To indicate that a variable is to have
a string value, the variable name is appended with a dollar sign (§),
e.g., ADDRESS$. Integer variables are identified by appending a
percent sign (%), e.g., 1%. Double precision variables are identified
with the pound sign (#), e.g., BUDGET#.

This means that unless you have identified variables using these
special symbols, all numeric values are stored as single precision
numbers, and are subject to the difficulties outlined above. This does
not usually cause a problem or a significant loss of accuracy when
making simple calculations. Most errors introduced in this way will



var 1: real;
j: integer;
begin
i

writeln;
j::O
end
end
end.

.000000000000000

.000000000000000E-2
.000000000000001E~2
.000000000000000E-2
.200000000000000E~1
.500000000000000E-1
.800000000000000E-1
. 100000000000000E-1
.400000000000001E~1
.700000000000001E-1
.000000000000001E-1
.300000000000001E-1
.600000000000001E-1
.900000000000002E-1
.200000000000002E-1
.500000000000003E~-1
.800000000000003E-1
.100000000000003E-1
.400000000000003E~1
.700000000000003E-1
.000000000000004E~1
.300000000000004E-1
.600000000000004E~1
.900000000000004E-1
.200000000000005E-1
.500000000000005E-1
.800000000000006E~1
.100000000000004E~1
.400000000000005E-1
.700000000000006E~1
.000000000000005E-1
.300000000000006E~1
.600000000000006E~1
.900000000000007E-1
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program precise(input,output);

1.000000000000000E-2

.000000000000000E-2
.000000000000001E-2
.000000000000000E=-1
.300000000000000E~1
.600000000000000E-1
.900000000000000E~1
.200000000000001E=-1
.500000000000000E-1
.800000000000001E~-1
. 100000000000001E~1
.400000000000001E-1
.700000000000001E~1
.000000000000002E~1
.300000000000003E~1
.600000000000003E~1
.900000000000003E-1
.200000000000003E-1
.500000000000003E~1
.800000000000004E-1
. 100000000000004E-1
.400000000000004E~1
.700000000000004E~1
.000000000000005E-1
.300000000000005E-1
.600000000000005E~1
.900000000000005E-1
.200000000000004E-1
.500000000000005E~-1
.800000000000006E-1
.100000000000006E-1
.400000000000005E-1
.700000000000006E~1

WOWOWOXONTIITOOOUITUIU = = = W wWW N NN — e e =3

2.000000000000000E-2

.000000000000000E-2
.000000000000000E-2
. 100000000000000E-1
.400000000000000E-1
.700000000000000E-1
.000000000000000E=~1
.300000000000001E-1
.600000000000000E~1
.900000000000001E-1
.200000000000001E=1
.500000000000001E~1
.800000000000002E~1
.100000000000003E-~1
.400000000000003E-1
.700000000000003E~1
.000000000000003E~1
.300000000000003E~1
.600000000000004E-1
.900000000000003E-1
.200000000000004E-1
.500000000000004E~1
.800000000000005E-1
. 100000000000004E-1
.400000000000005E~1
.700000000000005E~-1
.000000000000005E-~1
.300000000000006E-1
.600000000000004E~1
.900000000000005E~-1
.200000000000006E-1
.500000000000007E~1
.800000000000006E-1
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FIGURE 3.2-10: A Pascal program that outputs all the values between 0.0 and 1.0, using an in-
crement of 0.01. Note that most of the values are not precise. This is generally
caused either by errors occurring when converting from decimal to binary, or by
the inability of a particular decimal value to be exactly represented as a binary

value within the precision of the Pascal type real.
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be eliminated by simple formatting of the output using, for instance,
a PRINT USING statement.

Where these representations really cause trouble is in making
comparisons. Whenever a floating point variable is involved in a
comparison, its imprecise value can change the outcome. Consider
the programs shown in Figures 3.2-11 and 3.2-12. Algebraically, the
value of the variable | should exactly equal I, since (1/1)*I evaluates
to 1, and 1*I evaluates to I. However, because of conversions and
storage imprecisions, ] occasionally does not equal 1. This happens
more frequently in the BASIC example than in the Pascal because
of the differences in the way each language handles numbers.

Logically, these programs should have produced 100 “yes” out-
puts. But they didn’t. How would you ever tell this by looking at the
listing?

There are two ways to protect against this type of error. First,
explicitly define every variable to be of a specific type. In Pascal this
is required, but in BASIC it is not. Every variable in BASIC is as-
sumed to be a single precision number unless specified otherwise by
the flags $, %, and #. Therefore, use these flags religiously to make
certain that integers are treated as integers. Simple counters should
never be floating point values. Not only will this help protect you
from errors, but it will also increase the efficiency of your code.

The second method of protection is to never directly compare
floating point values. Instead, test for the difference of two values
to a tolerance level of exactness. This tolerance level tells how close
the two values need to be in order to be considered equal. How large
or small this tolerance level is will be dependent upon the amount
of accuracy required by the particular application, as well as the
precision of the numbers being used.

Figure 3.2-13 shows how the previous BASIC program could be
repaired so that it gives the correct answer every time. In this case,
a tolerance level of 0.001 was used. This means that as long as the
values of I and J are within one one-thousandth of one another, they
are considered to be “equal.”

Although the error appears to occur in about the fifth decimal
place, it would be somewhat dangerous to use a tolerance level much
smaller than that used. The rule of thumb here is that the tolerance
level should be at least one order of magnitude (i.e., ten times) larger
than the possible error. In this example, the error probably occurred
in the ten-thousandths place. Therefore, we used a tolerance level of
one one-thousandth, or ten times one ten-thousandth. We should
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10 K = 0
20 FOR I=1 TO 100
30 J = ((1/I)*1)*1
35 PRINT TAB(K¥23);
40 IF I = J THEN
PRINT "yes: ";
ELSE PRINT "no: "y
50 PRINT I;"™ "; J;
60 K= K + 1
70 IF K = 3 THEN PRINT: K = O
80 NEXT I
90 END
yes: 1 1 yes: 2 2 yes: 3 3
yes: b 4 yes: 5 5 yes: 6 6
yes: 7 7 yes: 8 8 yes: 9 9
yes: 10 10 yes: 11 11 yes: 12 12
yes: 13 13 yes: 14 14 yes: 15 15
yes: 16 16 yes: 17 17 yes: 18 18
yes: 19 19 yes: 20 20 yes: 21 21
yes: 22 22 yes: 23 23 yes: 24 24
yes: 25 25 yes: 26 26 yes: 27 27
yes: 28 28 yes: 29 29 yes: 30 30
yes: 31 31 yes: 32 32 yes: 33 33
yes: 34 34 yes: 35 35 yes: 36 36
yes: 37 37 yes: 38 38 yes: 39 39
yes: 40 40 no: 41 41 yes: 42 42
yes: 43 43 yes: Ly Ly yes: L5 us
yes: 46 46 no: u7 u7 yes: 48 48
yes: 49 L9 yes: 50 50 yes: 51 51
yes: 52 52 yes: 53 53 yes: 54 54
no: 55 55 yes: 56 56 yes: 57 57
yes: 58 58 yes: 59 59 yes: 60 60
no: 61 61 yes: 62 62 yes: 63 63
yes: 64 64 yes: 65 65 yes: 66 66
yes: 67 67 yes: 68 68 yes: 69 69
yes: 70 70 yes: 71 71 yes: T2 72
yes: 73 73 yes: 74 T4 yes: 75 75
yes: 76 76 yes: 77 77 yes: 78 78
yes: 79 79 yes: 80 80 yes: 81 81
no: 82 82 no: 83 83 yes: 84 84
yes: 85 85 yes: 86 86 yes: 87 87
yes: 88 88 yes: 89 89 yes: 90 90
yes: 91 91 yes: 92 92 yes: 93 93
no: 94 93.99999 yes: 95 95 yes: 96 96
no: 97  96.99999 yes: 98 98 yes: 99 99
yes: 100 100

FIGURE 3.2-11: Although algebraically the expression in line 30 evaluates exactly to I, note that
when dealing with a program, I does not equal J in many instances.
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program nothing(input,output);
var 1, j: real;
k: integer;
begin
for k := 1 to 100 do
begin
i = k;
Joi= ((1/71)%i)*1,
if 1 = j then write('yes: ') else write('no: ');
writeln(i,' ', )
end
end.
yes: 1.000000000000000 1.000000000000000
yes: 2.000000000000000 2.000000000000000
yes: 3.000000000000000 3.000000000000000
yes: 4.300000000000000E1 4.300000000000000E1
yes: U4.400000000000001E1 4.400000000000001E1
yes: U4.500000000000000E1 4.500000000000000E1
yes: U4.600000000000000E1 4.600000000000000E1
yes: 4.700000000000001E1 4.700000000000001E1
yes: 4.,800000000000000E1 4.800000000000000E1
no: 4.900000000000001E1 4.900000000000000E1
yes: 5.000000000000000E1 5.000000000000000E1
yes: 5.700000000000000E1 5.100000000000000E1
yes: 5.200000000000001E1 5.200000000000001E1
yes: 9.000000000000000E1 9.000000000000000E1
yes: 9.099999999999999E1 9.099999999999999E1
yes: 9.199999999999999E1 9.199999999999999E1
yes: 9.300000000000000E1 9.300000000000000E1
yes: 9.400000000000000E1 9.400000000000000E1
yes: 9.500000000000000E1 9.500000000000000E1
yes: 9.599999999999999E1 9.599999999999999E1
yes: 9.699999999999999E1 9.699999999999999E1
no: 9.800000000000000E 1 9.799999999999998E1
yes: 9.900000000000000E1 9.900000000000000E1
yes: 1.000000000000000E2 1.000000000000000E2

FIGURE 3.2-12: A Pascal program showing how calculations with real variables can cause impre-
cision. Algebraically, every comparison should have resulted in an output of
“yes”. Note that this routine performs better than its BASIC counterpart, but still
fails twice.
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10 K = 0
20 FOR I=1 TO 100
30 J = ((1/I)*¥1)*1
35  PRINT TAB(K¥23);
40 IF ABS(I - J) < .001 THEN
PRINT "yes: ";
ELSE PRINT "no: "
50 PRINT I;™ "; J;
60 K = K+ 1
70 IF K = 3 THEN PRINT: K = 0O
80 NEXT I
90 END
yes: 1 1 yes: 2 2 yes: 3 3
yes: 4 4 yes: 5 5 yes: 6 6
yes: 7 7 yes: 8 8 yes: 9 9
yes: 10 10 yes: 11 11 yes: 12 12
yes: 13 13 yes: 14 14 yes: 15 15
yes: 16 16 yes: 17 17 yes: 18 18
yes: 19 19 yes: 20 20 yes: 21 21
yes: 22 22 yes: 23 23 yes: 24 24
yes: 25 25 yes: 26 26 yes: 27 27
yes: 28 28 yes: 29 29 yes: 30 30
yes: 31 31 yes: 32 32 yes: 33 33
yes: 34 34 yes: 35 35 yes: 36 36
yes: 37 37 yes: 38 38 yes: 39 39
yes: 4o 40 yes: 41 41 yes: 42 b2
yes: 43 43 yes: Ly 4y yes: 45 45
yes: 46 46 yes: 47 u7 yes: L8 48
yes: 49 49 yes: 50 50 yes: 51 51
yes: 52 52 yes: 53 53 yes: 54 54
yes: 55 55 yes: 56 56 yes: 57 57
yes: 58 58 yes: 59 59 yes: 60 60
yes: 61 61 yes: 62 62 yes: 63 63
yes: 64 64 yes: 65 65 yes: 66 66
yes: 67 67 yes: 68 68 yes: 69 69
yes: 70 70 yes: 71 71 yes: 72 T2
yes: 73 73 yes: T4 T4 yes: 75 75
yes: 76 76 yes: 77 77 yes: 78 78
yes: 79 79 yes: 80 80 yes: 81 81
yes: 82 82 yes: 83 83 yes: 8y 84
yes: 85 85 yes: 86 86 yes: 87 87
yes: 88 88 yes: 89 89 yes: 90 90
yes: 91 91 yes: 92 92 yes: 93 93
yes: 94 93.99999 yes: 95 95 yes: 96 96
yes: 97 96.99999 yes: 98 98 yes: 99 99
yes: 100 100

FIGURE 3.2-13: This code shows how the precision problem can be overcome when comparing
floating point values. The condition specified in line 40 requires that the two
values only be within 0.001 of each other in order to be considered “equal.”
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Loops

not use 0.0001 for the tolerance level because we are approaching
the limits of precision of BASIC, namely seven digits (two digits to
the left of the decimal and five digits to the right).

Similar precautions must be used when dealing with any com-
parison of two floating point numbers, not just when testing for strict
equality. This is because equality is always implictly being tested dur-
ing a comparison. For instance, the statement

IFA<BTHEN...

tests for equality, since the comparison will be false if A is equal to B.

The simplest and most commonly used loop is the FOR loop, which
successively increments or decrements a loop control variable by a
tixed amount. It is the mainstay of most BASIC programs. Its format
and syntax are fairly simple, and most people can grasp its purpose
quite easily. Yet, as simple as this construct appears to be, it is still a
source of innumerable errors in programs. This is because the com-
plexity of FOR loops is very deceptive. In addition, there has been
an uncountable number of authors who have promoted very dan-
gerous techniques for using FOR loops. It is an indication of just
how devious these contructs are when experienced authors are not
familiar with the pitfalls.

Branching and Loops

It is a well-known fact that a program should never attempt to branch
into the middle of a loop of any kind. If branching must be done,
it should always go to the loop statement itself, i.e., to the FOR,
WHILE, or REPEAT statement. What is not generally recognized,
however, is that it is very dangerous to branch out of a loop.

Figure 3.2-14 gives an example. This technique is widely rec-
ommended for inputting to an unknown number of values. The loop
is effectively infinite (i.e., will execute more times than is practical if
run to completion). The exit mechanism is the IF statement in line
260. The FOR statement itself is used simply as a convenient con-
struct for creating a loop.

There are two problems with this technique. First, it grossly vi-
olates rules of structured programming by introducing a block with



STRUCTURED PROGRAMMING

210 PRINT "When done, enter Q"

220 PRINT

230 TOTAL = 0

240 FOR I = 1 TO 10000

250 INPUT "Enter a number: ",X

260 IF X = 0 GOTO 290
270 TOTAL = TOTAL + X
280 NEXT I

290 AVG = TOTAL / (I - 1)
300 PRINT AVG

FIGURE 3.2-14: A poor method of inputting an unknown-length list of values.

two exits. The first exit is the FOR statement’s normal exit when the
loop control variable exceeds its maximum value. The second exit is
created by line 260.

But as has been said elsewhere, rules should never be adhered
to so strictly that they become oppressive. Bending a rule slightly in
order to gain a more convenient mechanism is often an acceptable
compromise. However, a more devious problem may occur with some
languages. In this case, a version of BASIC on some of the Radio
Shack microcomputers produces an error when the next loop fol-
lowing the one that was jumped out of is executed. This error may
be considered a bug in the BASIC interpreter of the Radio Shack
computers, but the fact is that some versions of languages cannot
handle such a branch.

Another reason for avoiding this technique is that the value of
the loop control variable cannot always be depended upon to be what
you think it should be once you exit the loop. Consider the code in
Figure 3.2-15. What will the last value of I be when printed in line
40? Unfortunately, it depends entirely on which version of BASIC
you are using. Some versions will print out 11, some 9, and still
others 10! While you may find out how your current version of
BASIC works, you can’t depend on any other version to work the

FIGURE 3.2-15: Different versions of BASIC execute this code in different ways.

10 FOR I = 1 TO 10
20 PRINT I

30 NEXT I

40 PRINT I
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same way. In addition, in languages such as Pascal, such a reference
to a loop control variable outside of the loop produces an error.

If mechanisms such as the one shown in Figure 3.2-14 are tempt-
ing to use, simply do not use the FOR loop. Substitute a WHILE or
REPEAT loop. However, remember to adhere to the principles of
structured programming by retaining only a single exit from the
loop. If the principles outlined in previous chapters for designing
programs are followed, this situation should never occur, since there
1s no way to represent such a mechanism in the pseudo-code con-
structs presented. A later section in this chapter, Translating to Code,
will discuss how these structured constructs can be translated into a
GOTO-oriented language.

Loop Control Variables

Another technique to perform the same function as above is shown
in Figure 3.2-16. This has also been suggested by a number of authors
as a clever way to enter a variable number of values. In this case,
when 0 is entered, the value of the loop control variable (I) is set to
be greater than the maximum value specified by the FOR statement.
Branching to the NEXT statement increments I, which is now ob-
viously beyond its maximum value. As a result, the loop 1s exited
normally.

This is, perhaps, in some ways to be preferred over the previous
method discussed, since it preserves the structured programming
principle of “one in—one out.” However, not all versions of BASIC
(or other languages) let you change the value of the loop control
variable while inside the loop.

FIGURE 3.2-16: Another poor method for entering an unknown-length list of values.

210 COUNT = O
220 PRINT "When done, enter Q"

230 PRINT

240 TOTAL = O

250 FOR I = 1 TO 1000

260 INPUT "Enter a value: ",X

270 IF X = 0 THEN I = 1001: GOTO 300
280 TOTAL TOTAL + X

290 COUNT COUNT + 1

300 NEXT I

310 AVG = TOTAL / COUNT

320 PRINT AVG
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PROGRAMMING

10 FOR I = 1 TO
20 PRINT I

30 I =1I-1
4O NEXT I

10

FIGURE 3.2-17: This code can produce an infinite loop in many versions of BASIC.

FIGURE 3.2-18:

The reason is that the incrementing or decrementing of the con-
trol variable is supposed to be automatic. This ensures that any changing
of the value of the control variable is done correctly. Otherwise,
problems such as that shown in Figure 3.2-17 can occur. In this
example we have an infinite loop, since the variable I is decremented
by the same amount that it is incremented by in the NEXT statement.

Even if the version of BASIC you use does let you change the
value of the loop control variable, I strongly suggest you avoid this
technique in order to eliminate the possibility of winding up with an
infinite loop. Again, if you follow the techniques suggested in this
book, this situation should never arise.

An equally troublesome problem is what happens when you change
the value of any of the other control variables in the FOR statement.
Recall that the general form of a FOR statement in BASIC is

FOR: = x TO y STEP z
where ¢ is the loop control variable, x is an expression that, when
evaluated, gives the initial value for ¢, y is an expression giving the
maximum value that i can obtain, and z is the amount by which i is
incremented each time the NEXT statement is executed. Since x, 9,
and z are expressions, they can contain variables themselves.
Figure 3.2-18 shows an example where the meaning of the code
1s obscure. How many times will I be printed, ten or seven? This
depends on the language. Most will allow you to change a variable

This code shows how modifying a loop control variable can create an ambiguous
logic.

10Y = 10
20 FOR I =
30 Y =7
40 PRINT I
50 NEXT I

1 TO Y
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FIGURE 3.2-19:

used in any of the expressions of the FOR statement without chang-
ing the number of times the loop will execute. This is because the
expressions are evaluated only once, the first time the loop is entered.
In other words, once the expressions x, y, and z have been evaluated,
their values will not be changed by changing the value of variables
used in these expressions while inside the loop. However, a situation
such as that shown in Figure 3.2-18 is confusing at best, and should
definitely be avoided.

WHILE vs. REPEAT

The final concern is whether the FOR loop in the language you are
using is implemented like a WHILE loop, where the test is performed
immediately, or like a REPEAT-UNTIL loop, where the test is not
performed until the bottom of the loop. Recall that we specifically
defined the FOR statement in the pseudo-code to be based on the
WHILE loop. Pascal follows this specification explicitly.

Unfortunately, BASIC again does not follow any one pattern.
Some versions implement it one way, some the other. Most appear
to implement the FOR-NEXT loop as a WHILE loop. Figure 3.2-
19 shows a simple program that will test your version of BASIC to
determine which method it uses. If this code prints out the word
“repeat,” then your version of BASIC implements the FOR-NEX'T
loop as a REPEAT-UNTIL loop. If only the word “end” is printed,
then FOR-NEXT is implemented as a WHILE loop.

Again, however, it is probably safest not to assume that any ver-
sion of BASIC you are going to run a program on will implement
FOR-NEXT in a particular way. Figure 3.2-20 shows how you can
include code that will guarantee the FOR-NEXT loop is executed as
a WHILE loop, even if the version of BASIC you are using has
implemented it as a REPEAT-UNTIL loop. Unfortunately, there is
no way to turn a FOR-NEXT loop that is implemented as a WHILE
loop into a REPEAT-UNTIL version. In such a case, the REPEAT

This code can be used to determine whether the FOR loop of a version of BASIC
acts as a WHILE loop or a REPEAT loop.

10 FOR I = 1 TO O
20 PRINT "repeat"
30 NEXT I

40 PRINT "end"
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110 IF X > Y GOTO 280
120 FOR I = X TO Y

270 NEXT I
280 ...

FIGURE 3.2-20: An example of how a simple IF statement (as in line 110) can be added to ensure
that the FOR loop is treated as a WHILE loop instead of as a REPEAT loop.

loop will have to be constructed in another way, as shown in the
following section.

Translating to Code

If you are going to use Pascal or another structured language, then
translating the design into code is fairly straightforward, since the
control structures used to express the algorithm are available in the
language. This is true to a certain extent with the more recent ver-
sions of BASIC, including the Microsoft version. These versions often
include the IF-THEN-ELSE, WHILE, and REPEAT-UNTIL state-
ments that form the skeleton of the structured languages.

Unfortunately, most versions of BASIC have another limitation
that makes using the constructs difficult. The maximum length of
any one statement in Microsoft BASIC, for instance, is 255 charac-
ters. This isn’t a problem for the WHILE loop, since there is a second
statement (WEND) which delimits the end of the loop, much like
the NEXT statement does in the case of FOR. But for the IF state-
ment, this limit can cause considerable difficulties.

Another problem with the IF-THEN-ELSE of BASIC is that it
creates some very odd looking, and therefore potentially misleading,
code. Consider the pseudo-code shown in Figure 3.2-21. Figure 3.2-
22 shows how this pseudo-code would be translated into BASIC.
Note the ELSE followed by another ELSE. This is absolutely nec-
essary to ensure that the statements LET A = A — | and GOSUB
910 are performed when A )= 5, not when Q (= A. Each ELSE is
applied to the closest IF statement that has not been matched with
another ELSE.

In addition, the REPEAT-UNTIL and CASE constructs are not
often implemented in BASIC. As a result, these control structures
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FIGURE 3.2-21:

FIGURE 3.2-22:

IF A < 5 THEN
BEGIN
increment A;
set Q to Z * 47;
IF Q > A THEN
BEGIN
decrement Q;
Print-Out-Routine
END
END
ELSE
BEGIN
decrement Aj
Print-Qut~Routine
END;

Later figures show how this pseudo-code can be translated into BASIC.

need to be simulated using other statements. We will discuss how to
simulate all of these control structures using simple branching state-
ments. The one caveat is that you must be cautious not to corrupt
these constructs when you change or maintain the program. As will
be pointed out in the next section, you should use comments to alert
anyone reading the code as to exactly where these constructs are
being simulated.

IF-THEN-ELSE

Let’s begin with an example of simulating a simple IF-THEN state-
ment. If we consider the general form of such a statement,

IF condition THEN true-clause

An example of how the algorithm shown in Figure 3.2-21 might be implemented
in BASIC.

170 IF A < 5 THEN
A+ 1:
Z ¥ 47
F Q > A THEN
Q=0Q - 1:
GOSUB 910 'Print-0Out-Routine
ELSE
ELSE
A= A - 1
GOSUB 910 'Print-Out-Routine

non

A
Q
I
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we recognize that we wish to execute the statements in the true-clause
whenever the condition tests to be true. We can construct a functionally
equivalent series of statements using the IF-GOTO form of the IF
statement in the following manner:

100 IF NOT condition GOTO 170
110 frue-clause

170 . . . (next statement)

In this way, we branch around the statements of the true-clause when-
ever the condition is true. The reverse logic (NOT condition) of the
IF statement causes a branch whenever its tested condition is true.
When NOT condition is true, condition must be false.

For example, consider:

100 IF A = 5 THEN C = 12: PRINT A*C
. . (next statement)

This can be simulated as:

100 IF A () 5 GOTO 130

110 C = 12
120 PRINT A*C
130 . . . (next statement)

An IF-THEN-ELSE construct is a little trickier to represent. In
order to preserve the order of the clauses in the code, reverse logic
must again be employed. In general,

100 IF condition THEN true-clause ELSE false-clause
. . . (next statement)

would be converted to

100 IF NOT condition GOTO 190
110 true-clause

130 GOTO 260
190 false-clause

260 . . . (next statement)
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FIGURE 3.2-23:

Line 180 is necessary in order to branch around the false-clause state-
ments when the true-clause has been executed. Figure 3.2-23 shows
how the pseudo-code of Figure 3.2-21 can be converted to code using
this method. Note that this does introduce some inefficiencies, such
as the GOTO of line 200 branching to another GOTO. This should
not be avoided, since it preserves the structured nature of the code.
Another inefficiency here is the repeating of the code that decre-
ments A and calls the Print-Out-Routine. Again, this should not be
eliminated for the sake of efficiency, since such action would destroy
the structure of the code.

While

Even though many versions of BASIC now include a WHILE loop,
let’s briefly look at how one can be simulated from simpler constructs.
The flowchart form of the WHILE loop gives the clues we need for
how to proceed. Figure 3.2-24 shows a WHILE loop in pseudo-code
(a) and a flowchart (b) that can be drawn for it. The diamond shape
in the flowchart indicates a branch, which can be performed with a
simple IF-GOTO statement. This flowchart could then be used to
generate the BASIC code given in part (c) of the figure. Note that,
once again, negative logic had to be used in the condition of the IF
statement.

Repeat-Until

The reason the REPEAT-UNTIL construct is not included in BASIC
is probably that it is so simple to construct with just an IF-GOTO
statement. Consider the loop defined in Figure 3.2-25a. This can

The algorithm of Figure 3.2-21 implemented without the formal IF -THEN-ELSE
mechanism. Lines 180 through 220 make up the THEN clause, while lines 240
and 250 make up the ELSE clause of the main IF statement. Line 260 is the next
statement.

170 IF A >= 5 GOTO 240

180 A= A + 1

190 Q = Z ¥ 47

200 IF Q <= A GOTO 230

210 Q = Q -1

220 GOSUB 910 'Print-0Out-Routine
230 GOTO 260

240 A = A - 1

250 GOSUB 910 'Print-Out-Routine
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WHILE (A < Z) DO
BEGIN
output Aj;
set Z to Q * 17;
output Z;
decrement A
END;
a
NO s0 e
(EXIT)
YES
SETZ
ToQ *17
DECREMENT
A
-
b
240 IF A >= Z GOTO 300
250 PRINT A
260 Z = Q ¥ 17
270 PRINT Z
280 A= A -1
290 GOTO 240
300 ... (next statement)
C

FIGURE 3.2-24a, b, and c: The pseudo-code in (a) can be translated in the flowchart shown in
(b). This can then be easily translated in the BASIC code shown in (c).
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SETZToO
Q=*17

DECREMENT
A

No

(ExIT) | YES

°
°
°

360 PRINT A

370 Z = Q ¥ 7

380 PRINT Z

390 A=A -1

400 IF A < Z GOTO 360
410 ... (next statement)

b

FIGURE 3.2-25a and b: The flowchart in (a) shows a REPEAT-UNTIL loop. This can be translated
into the BASIC code shown in (b).

easily be coded, as shown in Figure 3.2-25b. Note, again, the reverse
logic used in statement 400.

Case

The CASE is an imposing statement when viewed in pseudo-code
form. Consider the example in Figure 3.2-26a. It is not immediately
obvious how this might be translated into code without a CASE state-
ment.

The clue comes easily from the flowchart, as shown in Figure
$.9-26b. Each case can be considered an individual test of the same
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CASE today OF

Monday: BEGIN
Q := 17;
Print-Out-Routine
END;
Tuesday..Thursday: Z := Q ¥ 5;
Friday: BEGIN
Q = 47
Z:A/6;
Print-Out-Routine
END;
OTHERWISE: Q := 0
ENDCASE;

Q:=17 | | | PRINT-OuT-
ROUTINE

Z:=Q%*5 -F—

.o - o L | PRINTOUT- L
Qi 47 Z:i= Al ROUTINE

oo o e

FIGURE 3.2-26a and b: Part (a), top, shows an example of a CASE statement in pseudo-code.
There is an obvious problem when trying to translate this statement into a pro-
gramming language that does not contain a CASE statement. Part (b), bottom,
shows how this pseudo-code can be drawn in a flowchart. Part (c), top right, shows
how this flowchart can then be used to create appropriate code in BASIC, which
typically does not contain a CASE statement.
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FIGURE 3.2-26¢

730 IF TODAY$ = "MONDAY" THEN
Q = 17:
GOSUB 1110: 'Print-Out-Routine
GOTO 770
740 IF (TODAY$ = "TUESDAY") OR (TODAY$ = "WEDNESDAY")
OR (TODAY$ = "THURSDAY") THEN
Z:Q*5:
GOTO 770
750 IF TODAY$ = "FRIDAY" THEN
Q = 47:
Z = A/ 6:
GOSUB 1110: 'Print-Out-Routine
GOTO 770
760 Q = 0
770 ... (next statement)

variable. In this example, the case selector is the variable TODAY,
which can be tested against the values given in each case. When a
match is made, the statements associated with that case are executed.

Each case can, therefore, be treated as an individual IF statement.
The flowchart could be coded in BASIC as shown in Figure 3.2-26c.

If the IF-THEN construct isn’t going to allow you to put enough
statements on the same line number (because of the 255 character
limit), you'll have to simulate this with an IF-GOTO construction as
discussed previously.

3.3 PROGRAM STYLE

In this section, we will discuss how to make the general format of a
program more readable. As always, any improvement in readability
of the code will increase the programmer’s ability to maintain the
program properly. It will speed up his or her searches for specific
code, and aid him or her in understanding that code.

There are few functional requirements for the format of a pro-
gram, although each language requires the general outline of a pro-
gram to follow certain forms. For instance, in Pascal, a PROGRAM
statement must be the first statement of every program. Indeed,
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Pascal in many ways can be said to have a very rigid format require-
ment, while BASIC has a very free format.

Each programmer has a tendency to develop his or her own style.
This is perhaps as it should be, since programming is a creative
activity. However, when a programmer follows his own style, it may
make his code more difficult for another programmer to read. This
is especially true when the programmer does not follow one style
consistently, but changes style throughout a program. This occurs
typically because the programmer hasn’t quite settled on one style,
or because he simply did not take the time to be consistent.

Adding style to a program is time-consuming and is considered
by some, along with general documentation, to be unproductive.
However, it has been shown in research that a well-styled program
is easier to maintain, so it makes sense to style your programs. Main-
tainability has been the ultimate goal of nearly everything covered
in this book so far.

In the discussions that follow, the formats suggested are based
upon many years of professional programming experience. They
have worked for me, so I assume that they will work for you. How-
ever, they are not hard and fast rules that must be followed. Feel
free to add to these guidelines any ideas that will make the code
more readable for you. Be certain, however, that any format you try
is consistently applied, at least within a single program. Also, keep
a notebook of any styles that you intend to use, complete with an
example. This makes it easier to apply these styles consistently with
each new project.

General Format

First, let’s look at some ideas for defining a program’s format in
general terms. This is already done to a large extent in Pascal, where
the language forces us to place all declarations in a specific order.
In BASIC, however, there are few such restrictions. As a result, it
will be necessary to define our own format for BASIC.

BASIC Program Format

A program can be thought of as being composed of two distinct
parts, declarations and executable code. We might wish to include a
third part, comments, that have no effect on the outcome of a pro-
gram’s execution. By identifying these three parts, we can more
clearly define their respective roles in the format of the program.
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FIGURE 3.3-1:

PROGRAM HEADER Comments are used strictly to give addi-
tional information to the programmer as he or she is reading the
code. They are not available to a user of the program. Typically,
comments will be scattered throughout the program to give a run-
ning commentary of the action. It is helpful, however, to begin each
program with a special series of comments called a program header,
which provides general information about the nature of the program.
The contents of the program header are discussed in detail in section
6.2, Internal Documentation.

DECLARATIONS The next section of the program should consist
of any declarations that must be made. These generally appear as
the first statements in a program because their job 1s to set up var-
iables and workspace for the program to use. Figure 3.3-1 gives a
list of BASIC statements that would fall into this category. They are
listed in an order that usually should be followed in the program.

In Microsoft BASIC, a special statement, %INCLUDE, can be
used anywhere in the program to copy statements from a file into
the program. %INCLUDE could be used to copy a predefined set
of declarations into the program. This might change the order of
the resulting list of declarations somewhat, but as long as the syntactic
rules concerning the order of declarations for the version of BASIC
being used are followed, there is no harm in this.

Note that DATA statements have been included in the list. Such
statements are not part of the executable code, since they do nothing
by themselves. They depend on the READ statement to activate
them. I feel it is much more understandable to lump all DATA
statements together in one location in the program, rather than pair
the data statements with individual READ statements throughout
the program, as promoted by many authors. This is because BASIC

A list of typical BASIC commands used to set up variables and workspace for a
program to use. These commands should usually be included in the declaration
part of a program.

OPTION BASE
DIM

COMMON
MERGE, CHAIN
DEF

FIELD

DATA
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treats all READ statements as contiguous anyway, no matter where
they are located in the program. Placing all DATA statements to-
gether emphasizes this fact. In addition, it removes them from the
main program, where they invariably clutter the code, making it
more difficult to read.

USER INSTRUCTIONS If this is to be an interactive program,
Le., one which will output messages to a user and will expect input
from the user, it is usually a good idea to output a general message
to the user at the very beginning of the program. This message could
include a short description of the purpose of the program, letting
the user know that the proper program has indeed been executed.

In addition, this section should output the beginning instructions
to the user on how the program is used. In more sophisticated sys-
tems, this could include multiple levels of help facilities and start-up
instructions, for a range of users from novice to expert. At the very
least, this output should describe, in a general way, what is expected
of the user.

INITIALIZATION  This section of the program gives initial values
to variables that will be used in the program. In addition, it executes
statements that set up other types of initialization.

Figure 3.3-2 gives a list of statements commonly included in this
section. Once again, these statements are specified in a recommended
order due to certain constraints on the way BASIC functions.

OPEN statements are included here for files that are going to be
used throughout the program. This is not a strict requirement, how-
ever, since there are many occasions when a file must be opened and
closed numerous times throughout the program. In this case, the
OPEN statement would appear wherever it is appropriate in the
program.

The CLEAR statement resets all variables to zero, all strings to

FIGURE 3.3-2: A list of BASIC statements that are used for initializations of variables, files, etc.

ON ERROR
CLEAR
RANDOMIZE
OPEN
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null, and closes all files. Even though most languages perform such
initialization automatically when a program is first entered, I strongly
recommend using this statement explicitly in every program. Its ef-
fect on efficiency is minute, and such an initialization could save you
great headaches later on during debugging.

Although this seems to cover all types of initialization for vari-
ables, there are usually other initial values that must be set up. There-
fore, follow this section with any LET statements needed for that
purpose.

Initializations are typically meant to be executed only once. How-
ever, certain programs may require re-executing at least a portion
of the initializations. In such a case, make certain that nothing gets
reset unless it is supposed to. On the other hand, make certain that
everything that needs to be reset is!

MAIN PROGRAM The main execution of the program comes
next. The content of this section will obviously vary greatly from
program to program. However, you will be surprised at how many
programs follow a simple pattern of input, processing, and output.
You should be able to easily identify such sections in your programs
if you have followed the guidelines discussed previously.

SUBROUTINES AND FUNCTIONS Finally, itis helpful in many
ways to group all subroutines and user-defined functions together
in one place. The most out-of-the-way location is at the end of the
program. This keeps the necessity of branching around subroutines
to its absolute minimum. It requires, however, that the subroutine
section be preceded by a statement that will keep normal execution
from “falling into” the subroutines. Such a statement would be either
STOP or a GOTO the END statement.

END Programs should always have a defined end. Although BASIC
does not usually require an END statement, I strongly recommend
it. This keeps with the structured principles previously outlined and
gives a place to GOTO from anyplace in the program to halt exe-
cution. This is preferable to numerous STOP statements because it
preserves the “one out” philosophy of modules. generally number
the END statement with all 9s, making it very obvious in the program
whenever I'm branching to the END.
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SUMMARY  The following gives a summary of the general format
of a well-styled BASIC program:

Program header

Declarations, including DATA statements
Start-up instructions to the user
Initialization

Main program

GOTO end

Subroutines

END

® NP G w10

Pascal Program Format

In Pascal, the general layout of a program is strictly defined and
cannot be altered. Since Pascal requires all declarations, including
procedures, to follow this strict order, the only place for any personal
styling is in the main program block itself.

The pattern of executable statements can vary greatly from pro-
gram to program, making the development of a single, well-defined
layout difficult. However, since programs follow similar patterns no
matter what language they have been written in, the same general
format for the executable statements portion of the program will
apply to Pascal as well as to BASIC.

The only exception to this is in the placement of the subroutines
(called procedures in Pascal). Pascal considers these to be declarations
and requires that they be specified in the declarations section of the
program.

This leaves only the instructions, initializations, and main pro-
gram sections, which should follow the same order as before. Ob-
viously the details of such sections will be different.

In the case of initializations, however, the types of actions still
apply. Any error initialization should be performed first. Then, set-
ting up variable and file initializations should be handled. There are
typically no special keywords to perform many of these functions in
Pascal. The reference manual for the compiler you are using will
have to be consulted for details of how to accomplish these actions.

Indentation

One method of making a program listing more readable is to use
an indentation technique for each block of code. This makes each
block stand out more and helps to highlight the scope of the block.
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FIGURE 3.3-3:

Indentation can be implemented simply by indenting, say, two spaces
each time a new block is encountered. When the block ends, remove
the indentation for that block. This indentation follows the same
form as that shown in section 2.2, The Use of Pseudo-code.

Figure 3.3-3 gives an example of indentation of BASIC. Each
time a new level of embeddedness of control structures is encoun-
tered, additional indentation is made. Note that pairs of FOR and
NEXT statements, WHILE and WEND statements, and IF and ELSE
(when there is one) statements are on the same level of indentation.
This makes identifying the scope of these constructs more obvious.

Figure 3.3-4 shows how this might be handled in Pascal. We must
use the BEGIN-END construct for denoting blocks in Pascal. Note
that they are aligned with the control structure to which they apply.
Also note the use of comments (identified by {} in Pascal) to help
identify which END goes with which BEGIN.

There are programs, often called pretty printers, that will do
this type of indentation automatically, but by whatever means 1t 18
accomplished, indentation is worth the effort.

An example of using indentation in a BASIC program to indicate the scope of
control structures.

180 FOR I = 1 TO 25
190 IF I = 16 THEN
PRINT:
7 = 47
ELSE
IF A$ = "YES" THEN
GOSUB 1110:
B$ = "YES":
PRINT I
200 WHILE A$ = "YE3S"
210 X =0
220 Z = A * 1 4+ C(I)
230 FOR J = I TO K
240 PRINT "#n;
250 IF J = INT((K-I)/4) THEN
PRINT
260 NEXT J
270 IF Z = 47 THEN
Z = 0:
INPUT A$
ELSE
A% = "NOM
280 WEND
290 PRINT
300 NEXT I




STRUCTURED PROGRAMMING
168

for I := 1 to 25 do
begin
if I = 16 then
begin
writeln;
z:=147
end { if }
else
if ASTRING = 'YES' then
begin
Out-Routine;
writeln(1I)
end; { if, also else }
while ASTRING = 'YES' do
begin
X 0;
Z A ¥ T
for J := I
begin
write('#');
1f J = trunc((K-I)/4) then

LI}

+ C[I];
to K do

writeln
end; { for 1}
if Z = 47 then
begin
Z 1= 03
readln(ASTRING)
end { if }
else
ASTRING := 'no'
end; { while }
writeln
end; { for }

FIGURE 3.3-4: Using indentation in a Pascal program to indicate the scope of control structures.
The comments are added to increase the readability by identifying an end with
the statement to which it applies.

Comments

I am a firm believer in the usefulness of documentation. Comments
within a program can make the code much more readable and un-
derstandable. The specifics of such comments are covered in section
6.2, Internal Documentation. However, here we will concern our-
selves with the form that comments take.

Block Separators

It is amazing how separating lines of code with blank lines can make
it more readable. Such separators between blocks enhance the mod-
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ularity of the code. These can be added simply by placing blank
comments between lines. In most modern compiled languages, blank
lines can be added with the editor used to create the program code.
In a language like BASIC, specific blank comments must be added.
This uses up line numbers in BASIC but is still easily accomplished.

Most compiled languages also include commands for causing
special spacings in a listing. The most often used one causes a page
break, i.e., the listing skips to the top of a new page before continuing.
Such commands do not affect the execution of the program or the
program output. They are used by the compiler only to generate a
listing of the program. The page break can be used to begin modules
on a new page.

Another useful technique is to print entire lines of a special char-
acter to indicate a particular type of block. It might be helpful, for
instance, to use a line of asterisks in between each subroutine in the
program. This makes the subroutines easier to locate.

Control Structures

If you have built your own control structures using the IF-GOTO
statement, as discussed in section 3.2, Implementation Guidelines,
comments should be used to identify what the constructs are as well
as their scope. This is important so that such constructs are easily
recognized when you maintain the program the next time. Figure
3.3-5 gives an example of such comments for a BASIC program.

Detail Line Comments

You should not feel compelled to comment every line of code. In
fact, if you have done so, you have either wasted your time or have
not written the code properly. Such detail line comments may be
necessary when using assembly language, but should not be required
when using a high-level language.

When comments are used, they can generally be added either by
including entire lines of comments, or by adding a comment on the
same line as code. The former approach should usually be taken
when commenting on an entire block of code. The latter method is
sometimes necessary to describe a particularly tricky section of the
program. In this case, I typically try to make all of my comments
start in the same column of the line—for instance, in column 60. In
addition, I try not to let my code run past this column. This makes
the comments stand out more without obscuring the code. Remem-
ber that making the code readable is what counts.
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190 FOR I = 1 TO 25
195 !
200 IF I <> 16 GOTO 250
210 PRINT ''if I = 16, then
220 Z = 47
240 GOTO 300 ' end then (I = 16)
245 !
250 IF A% <> "YES" GOTO 300 'else, if I <> 16
260 GOSUB 1110 ' if A$ = "YES", then
270 B$ = "YES"
280 PRINT I ' end then (A$ = "YES")
290 ' end else (I = 16)
300 IF A$ <> "YES" GOTO Uus0 ' while A$ = "YES" do
310 X =0
320 Z = A ¥ I 4+ C(I)
330 J = I
335 !
340 PRINT "¥", ' repeat
350 IF J = INT((K-I)/4) THEN PRINT
360 J = J + 1
370 IF J < K GOTO 340 ''until J >= K
375 !
380 IF Z <> 47 GOTO 420
390 Z = 0 ''if Z = 47, then
400 INPUT A$
410 GOTO 450 ' end then (Z = 47)
yis t
420 A$ = "NO" ' else, if Z <> 47
430 ' end else (Z = 47)
4uo ' end while (A% = "YES")
450 PRINT
460 NEXT I

FIGURE 3.3-5: An example of how comments can be added to identify what control structures
are being used, and their scope, in a BASIC program segment. Note, too, the use
of indentation to aid in identifying the scope of the structures.

Figures 3.3-6 and 3.3-7 give examples of these techniques in
BASIC and Pascal, respectively. Note in the BASIC example the use
of the apostrophe instead of the keyword REM to indicate a com-
ment. Having REM all over the place in a listing tends to clutter it.

I3-4 EFFECTIVE USE OF SUBROUTINES

Like many of the techniques we have discussed thus far, subroutines
can either make our lives as programmers miserable, or make them
simpler by providing a tool for constructing well-ordered programs.
The first instinct that must be modified in the programmer is that



I EFFECTIVE USE OF SUBROUTINES

171
180 PRINT
190 PRINT
195 ' repeat
200 INPUT "Enter any integer number: ", NUMBER
210 ' yerify it's integer
220 IF NUMBER - INT(NUMBER) <> 0 THEN
PRINT "Number is not an integer --reenter":
GOTO 200 'until valid
230 !
240 ' reverse the number
250 '
260 X = NUMBER
270 Z = 0
280 IF X <= 0 GOTO 350 'while x > 0 do
290 W = INT(X / 10)
300 Y = X - W ¥ 10 'y is right-most digit of x
310 Z = Z % 10 + Y 'put y digit on right side of z
320 X = W 'w is x without its right-most digit
330 GOTO 280 'end while
340 !
350 PRINT
360 PRINT
370 PRINT "original", "reversed"
380 PRINT "number", "number"
390 PRINT LA I, Vl’ M n
400 PRINT NUMBER, Z
410 PRINT
420 !
430 if the number that was input is the same as the
4no reversed number, then the number is a palindrome (i.e.

]
1
450 ' the same digits read right to left as read left to right
460 !
470 IF NUMBER = Z THEN
PRINT "the number is a palindrome"
ELSE PRINT "the number is not a palindrome"

FIGURE 3.3-6: An example of the use of detail line comments in a BASIC program.

which says the subroutine’s primary raison d’etre is to eliminate du-
plicate code from a program. As we have already discussed, creating
structured programs often causes the duplication of code. However,
the overall effect of implementing modules as subroutines is gen-
erally very pleasing.

Modularity, Top-down, and Bottom-up Revisited

Subroutines will be the implementation of modules, sort of the flesh
and blood manifestation of the spirit. The creation of subroutines
will aid in the isolation of functions within the system. Therefore,
should anything need to be changed with regard to a particular
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program palindrome(input,output);
var number, w, x, y, z: integer;
begin
writeln;
writeln;
writeln('Enter any integer number: ');
readln(number);

{ reverse the number }

number; { initializations to get started }
0

X
Z

while x > 0 do

begin
w o= x div 10; { div is integer division }
Yy = X - w ¥ 10; { v is right-most digit of x }
z 1=z ¥ 10 + y; { put y digit on right side of z }
X 1= W { w is x without its right most digit }
end;
writeln;
writeln;
writeln('original number: ',number);
writeln('reversed number: ',z);
writeln;

{ if the number that was input is the same as the reversed
number, then the number is a palindrome (i.e. the same

digits read right to left as read left to right }
if number = z
then
writeln('the number is a palindrome!')
else

writeln('the number is not a palindrome')

end.

FIGURE 3.3-7: An example of line comments in a Pascal program. Blank lines can be added to
a Pascal program without using an explicit comment.

function, the changes to the code are generally limited to a single or
series of subroutines. This makes the maintenance of the system
infinitely easier.

In addition, this isolation of functions helps in debugging the
system. First, debugging can be done incrementally, on each module
as it is created rather than on the system as a whole. More important,
bugs are generally limited in their scope of “damage,” i.e., how far
the execution continues from the actual source of the error. Sub-
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routines form a kind of natural boundary that is difficult for bugs
to cross. Also, bugs can be more easily traced back to a subroutine
than to a general area of code within the entire program. Often
when a bug is isolated as being within a particular subroutine, that
subroutine can be tested independently from the rest of the code of
the system.

In implementing subroutines, we can again take either the top-
down or bottom-up approach, depending on our own whims. In the
bottom-up method, simply begin programming the lowest-level mod-
ule first, successively building up levels until the topmost level is
reached. Then return to any remammg module at the lowest possible
level to begin implementing again. In addition, you can test each
module as it is implemented, giving you the security that all code
below the level you are currently working at is probably “bug free.”
This is discussed in detail in Chapter 5, Program Testing and De-
bugging.

Personally, I find the bottom-up approach more satistying. First,
I feel more comfortable knowing all the code beneath the level I'm
working on when implementing a routine. Doing things top-down
can occasionally lead to the situation of coming to the bottommost
level and realizing that you forgot to do something at a higher level.
Second, I find testing a bottom-up implementation less tedious than
testing one developed top-down. It just seems easier to set up one
set of input parameters for testing a series of subroutines than to set
up output parameters in all subroutines for testing a top-down im-
plementation.

Problems

It would be nice to think that using subroutines solved all our prob-
lems without creating any new ones. No such luck. There are always
trade-offs in the computer field. In this case, using subroutines in
certain programming languages can introduce new types of errors
into your code. Protecting against the occurrence of such bugs is
often tedious. However, the overall benefits of using subroutines to
their best advantage can far outweigh any disadvantages.

A first problem is that many languages allow a programmer to
code multiple entries to or exits from a subroutine. The most no-
torious of these languages is BASIC, mainly because it doesn’t employ
any special mechanism other than a RETURN statement for iden-
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FIGURE 3.4-1:

510 I = 0

515 INPUT X(1I)
520 IF X(I) =
525 I = I + 1
530 IF I <= 1
540 RETURN
550 PRINT

560 PRINT

570 FOR J = 1 TO I
580 PRINT X(J)
590 NEXT J

600 RETURN

0 GOTO 550

00 GOTO 515

An example of the ambiguity of the BASIC subroutine mechanism. Does this code
show one subroutine, or two? Even reading the code very carefully does not
conclusively indicate which.

tifying a subroutine. Look at Figure 3.4-1. We see two RETURN
statements in the code. This might lead us to think that there are
two subroutines defined here. However, there could just as easily be
a single subroutine, since BASIC allows us to have as many RE-
TURNs as we wish. In addition, even if this were intended to be a
single subroutine, there is nothing to prevent us from having a GO-
SUB 550, for instance, somewhere else in the program where we
simply want to have the array X printed. There is no statement that
identifies the beginning of a subroutine in BASIC.

Obviously, the use of multiple entry or exit points for a subrou-
tine violates our “one in—one out” philosophy and should, therefore,
be avoided like the plague. A later section on Guidelines for BASIC
Subroutines discusses how to program around this problem.

A second deadly problem with subroutines is the use of global
variables. We can define the scope of a variable as being anyplace
in the program code where the value of that variable is known, i.e.,
can be used or modified. A global variable has a scope that encom-
passes all subroutines below the level on which it is declared. Figure
3.4-2 shows a Pascal program that declares three variables, sum, i,
and value, at the level of the main program. These variables can also
be used within the subroutine called sumit, making them global to
that subroutine. In this example, the value of sum is calculated within
the subroutine, and then used within the main routine to output the
sum of the ten numbers read in.
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program example(input,output);
var sum, i, value: integer;
{ the following is a subroutine }

procedure sumit;

begin
sum :=z= Oj
for 1 := 1 to 10 do
begin
readln(value);
sum := sum + value
end
end; { this is the end of the subroutine }
begin { this is the beginning of the main program }
sumit; { call the subroutine }
writeln(sum)
end.

FIGURE 3.4-2: An example of global variables in a Pascal program. All three variables (sum, i,
and value) are used as global, meaning that they can be referenced (used) within
both the main program and the procedure sumit.

Pascal Conventions

In Pascal, all variables must be declared, i.e., the Pascal com-
piler must be told explicitly what type a particular variable is. In
the example of Figure 3.4-2, the variables sum, i, and value are all
declared to be integers. Other types include real and char, which
are roughly equivalent to floating point numbers and strings in
BASIC. In addition, each Pascal procedure (subroutine) is de-
clared by giving it a name. A call to that procedure is performed
simply by using its name. Note how this is accomplished in the
main program of the example.

In fact, in Pascal any variable declared at the main program level
is global to any subroutine, unless certain steps are taken to prevent
this. Figure 3.4-3 shows how variables can be made local to a par-
ticular portion of code, in this case the subroutine sumit. Because the
variables : and value have now been declared at the sumii level, these
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FIGURE 3.4-3:

program example2(input,output);
var sum: integer;

{ this is the beginning of the subroutine }

procedure sumit:
var i, value: integer;

begin
sum := O;
for 1 := 1 to 10 do
begin
readln(value);
sum := sum + value
end
end; { this is the end of the subroutine }
begin { this is the beginning of the main program}
sumit;
writeln(sum)
end.

An example of using local variables in a Pascal program. In this case, the variables
i and value can only be referenced (used) within the procedure sumit. The variable
sum is still used globally, however.

variables cannot be referenced in the main program as sum can.
Therefore, they are local to the subroutine sumit. Their values cannot
be accessed or modified anywhere else in the program except within
the sumit procedure.

Using local variables is a way of limiting the scope of variables,
isolating them so that they cannot be accidentally used or changed
when we don’t really want them to be. We call these “accidental”
changes to a variable within a subroutine a side effect of the sub-
routine. The change of sum in the examples shown in Figures 3.4-2
and 3.4-3 is not a side effect since we intended for its value to change
as a result of calling the sumit subroutine. In addition, we can limit
the occurrence of side effects in Pascal by using local variables and
parameters, which will be discussed in the next section.

In BASIC, we don’t have as neat a mechanism as we do in Pascal
for dealing with global and local variables. In fact, all variables are
global in BASIC, which means that the value of a variable is known
everywhere in the program. This is mainly because variables are not
declared in BASIC. In other words, you can introduce a new variable
name any place in the code. The only exceptions to this are arrays
(declared with the DIM statement) and strings in some dialects of
BASIC.
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FIGURE 3.4-4:

100
110
120
130
140
150
160
170
299
999

GOSUB 210

PRINT SUM

GOTO 999

SUM = 0

FOR I = 1 TO 10
INPUT VALUE
SUM = SUM + VALUE

NEXT I

RETURN

END

An example of a BASIC program using subroutines. In BASIC, all variables are
considered to be global because of the nature of the language. This is one of the
main weaknesses of BASIC. This is made obvious from the example in Figure
3.4-5.

Figure 3.4-4 shows an example in BASIC of the same program
for adding ten numbers that we previously saw implemented in Pas-
cal. The function is exactly the same as in Figure 3.4-2, where all
variables were global. At line 110, in addition to the sum of the
numbers, we could output the value of the I and VALUE variables
if we wished. The variable / would have the last value of the index
variable from the FOR statement in the subroutine, while VALUE
would have the value of the last number that was entered. This all
works perfectly well, and there are no noticeable side effects.

Now look at Figure 3.4-5. Here the main program uses [ to hold
the age of the user. However, notice what happens to / once it is inside
the subroutine. There is a loop there that prints an entire row of
asterisks. Unfortunately, the index variable is /. What happens to
the age of the user when this subroutine is executed? It disappears
because the location in memory we called I is initialized to 1, and
then incremented past 70 within the FOR loop. Therefore, no matter
what age the user gives in response to the prompt in line 110, the
age printed out in line 140 will probably be 66!

If we were to look at just the subroutine, we wouldn’t notice
anything wrong with it. Likewise, looking at the main part of the
program also does not reveal anything amiss. It isn’t until we dili-
gently trace the execution of the code that we discover that the value
of I is inadvertently changed within the subroutine. This side effect
causes an error to appear in the output. More seriously, such a side
effect could create a fatal error, causing the program to crash. Un-
fortunately, there are no inherent mechanisms in BASIC to keep
such side effects from happening.
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100 INPUT "What year is this ";YR
110 INPUT "Enter your age: ",I

120 GOSUB 210

130 PRINT "You were born in "; YR-I
140 PRINT "You don't look a day over ";I - 5
150 GOTO 999

210 PRINT

220 FOR I = 1 TO 70

230  PRINT "*";

240 NEXT I

250 PRINT

260 PRINT

299 RETURN

999 END

FIGURE 3.4-5: An example of a side effect, where the execution of a subroutine messes up the

value of a variable. In this case, the variable I is used as a loop control variable
in the subroutine, while it is used to hold the age of the user in the main program.

Parameters

Back in the section on algorithms, we informally defined the notions
of input and output parameters. To recap, an input parameter is
any variable whose value is established before calling a subroutine,
and which is subsequently used within that subroutine. An output
parameter is any variable that we expect a called subroutine to change
so that the new value can be used in the calling routine. A variable
can be both an input and an output parameter if the value that the
variable had upon entering the subroutine is used within the sub-
routine, and if the subroutine will also modify the value of the
variable.

The main purpose of parameters is to limit (if not totally elimi-
nate) side effects when calling a subroutine. The idea is that the only
variables whose values are used within the subroutine are either input
parameters or local variables, and that the only way for a subroutine
to change a variable that is used outside that subroutine is for that
variable to be an output parameter.

Many programming languages contain a formal mechanism for
using parameters. For instance, the example in Figure 3.4-6 shows
how Pascal handles parameters. Following the name of the procedure
sumit 1s a list of the parameters that will either be passed to the
procedure as an input, or passed back as an output. In this case we
have two parameters, numbr as an input parameter, and sum as an
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program example3(input,output);
var sum, numbr: integer;

procedure sumit(numbr: integer; var sum:integer);
var i, value: integer;
begin
sum :=z 03
for 1 :=
begin
readln(value);
sum := sum + value
end
end; { end of subroutine }

1 to numbr do

begin { begin the main program }
readln(numbr);
sumit(numbr,sum);
writeln(sum)

end.

FIGURE 3.4-6: An example of using parameters in procedures in a Pascal program.

output parameter. The output parameters are easily identified be-
cause they must be preceded with a war designation. The paren-
thesized expression acts as the declaration for the variables that will
be called numbr and sum in the subroutine. Any reference to these
two names within the subroutine refers to the variables defined in
this declaration.

So what about the nwmbr and sum that were declared in the main
program? After all, a value for numbr that tells us how many numbers
will be read and summed in the subroutine was actually read in the
main program.

The names used in the main program refer to locations (ad-
dresses) within memory different from the locations of the variables
with the same names in the procedure sumit. To help keep things
straight, let’s for the moment refer to the variable numbr that is
declared in the main program as numbr,, and to the variable numbr
that is declared as a parameter in the procedure sumil as numbr,.
During the execution of this program, the following events take
place:

When we are executing statements in the main program, such
as read(numbr), the statements refer to the location in memory pointed
to by the name numbr,,. Figure 3.4-7 shows that the only two variables
we can reference in the main program are sum, and numbr,. No
other variables have space set aside in memory for holding a value.



j STRUCTURED PROGRAMMING
180

NUMBRM

MAIN PROGRAM
MEMORY SPACE

SUM g

Sum p/

NUMBRp .

I e—p» PROCEDURE SUMIT
MEMORY SPACE

FIGURE 3.4-7: A graphical representation of the memory space that can be referenced when
either the main program or sumit procedure is executing.

When the sumit procedure is called by the main program, the
main program’s execution is suspended, and we enter the subrou-
tine’s environment. This means that a different area of memory, set
aside for use only by the procedure sumit, is now executing. When
sumit finishes executing, we will return to the environment of the
main program. Within the sumit environment, the only variables that
we can reference are sum,, numbr,, and i. Figure 3.4-7 shows that
only spaces set aside in memory at this time are for these variables.
No other variables can be referenced, including numbr,. As far as
the procedure sumit is concerned, this variable does not exist.

At the time that the call from the main program to sumit is made,
any variables that are used in the call statement itself (we call these
the actual parameters, in this case numbr, and sum,) have their values
copied to the corresponding variable name (called the formal pa-
rameter) that is an input parameter. If, for instance, we had entered
the value 5 for the number of values to be summed, that value would
be copied from numbr, into numbr, when the call is made. Thus, the
subroutine can use the value that it got from the caller without directly
referencing the same physical location in memory. That’s the key, since
now we cannot inadvertently change the value of numbr,, within the
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subroutine. Any reference to numbr within sumit refers to what we
have called numbr,, and not numbr,,.

However, output parameters are handled differently, thus the
need for using the var tag in front of the output parameter decla-
ration in the procedure statement. In this case, referencing sum in
the procedure sumit really does directly reference the same physical
memory location as the variable named sum in the main program.
Therefore, any change to sum within sumit will change the value of
sum in the main program.

So why not just use global variables instead of the formality of
output parameters? Isn’t the net effect the same? As you might ex-
pect, the answer is both yes and no. Using output parameters can
help eliminate side effects by requiring all variables used within a
subroutine to be either input parameters, output parameters, or local
variables. It is this last requirement that is the mortar for the brick
wall we have erected against side effects. Essentially, we have out-
lawed the use of global variables.

As it turns out, this is a great idea, and works very effectively
when dealing with simple variables. However, the benefits of the
entire system begin to break down when we attempt to pass complex
data structures, such as arrays, as parameters. In this case, it is much
more efficient to use global variables to refer to the structure than
to actually pass it as a parameter. So global variables have their place
in the scheme of things, too.

Guidelines for BASIC Subroutines

BASIC lacks any but the most rudimentary form of a subroutine.
As mentioned earlier, the only special statement defined for sub-
routines, in addition to the calling GOSUB, is the RETURN. This
in itself gives us very little help in using subroutines effectively.
Therefore, it is up to us as clever programmers to come up with our
own mechanisms to make using subroutines less hazardous. The
techniques I will suggest may seem like the hard way of doing things,
and undoubtedly they are occasionally just that, but they do bend
the inhospitable world of BASIC subroutines into a form that can
be safely used by any programmer.

Style

Dwyer and Critchfield [35] suggest a general format for BASIC
subroutines that I find very useful. It involves little more than using
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comments and a simple numbering system to set up every subroutine
into a common pattern. In this way, it is hoped that the subroutine
will be less mysterious when it comes time to decipher it during
debugging.

First, number the first statement of all subroutines with a line
number that ends in 10. In this way, the beginning of the subroutine
is obvious. In the subroutine shown in the program of Figure 3.4-
8, the subroutine code begins on line 510. This idea also supports
our “one in” philosophy, since now the only way into this subroutine
should be through the subroutine “header.”

Second, number the RETURN statement for a subroutine with
the next highest number needed that ends with a 99. In the example,
the end of the subroutine is line 599. This “wastes” a couple of line
numbers that might have been used, but think of it more as allowing
some room for the growth of the subroutine later. In addition, this
numbering forces the RETURN statement to be the last physical line
of the subroutine, again making it obvious which statements belong
to each subroutine.

FIGURE 3.4-8: An example of how a BASIC program can be styled to enhance understanding.

Note especially the use of special variables within the subroutine to simulate
“local” variables.

100 INPUT "How many numbers "; NUMBR

105 TOO3505 0055550000053 5 5500005055555 5 5533555555555 55 555555

110 'Prepare input parameter for routine 510

120 NUM5 = NUMBR

130 GOSUB 510 "CALL SUMIT(SUM,NUMBR)

140 'Set output parameter from routine 510

150 SUM = S5

155 1<<LCCLLLLLLCLLLLLLLLLLCLLLLLCLLLLLLCLCCCLLCLLCL LK CLLKKKK

160 PRINT SUM

170 GOTO 999

500 Routine SUMIT

501 ' Input parameters: NUM5, the number of values to be summed

502 ' Output parameters: S5, the sum of all the values

503 ' This subroutine adds a list of numbers entered by the user.

504 ' The parameter NUMBR tells how many numbers will be entered.

507 ' SUM gives the sum of the numbers.

508 !

510 S5 = 0

520 FOR 15 = 1 TO NUMS

530  INPUT VALS

540 S5 = S5 + VALS

550 NEXT I5

599 RETURN

999 END
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There should be only one RETURN statement in the subroutine.
If it is necessary to return from some other line in the code, simply
GOTO the line number containing the RETURN for that subroutine.
This preserves our “one out” philosophy for modules. This may seem
like splitting hairs, but a subroutine with more than one physical
RETURN point can be extremely treacherous to debug.

Finally, line numbers ending in 00 through 09 with the same
number as the subroutine header can be used for comments about
the subroutine. I suggest that you give each subroutine a name, even
though the name will only be used within a comment and is therefore
meaningless in the execution of the program. However, I find names
a lot easier to remember than line numbers. In addition, the name
of the subroutine can also be referenced in a comment attached to
the calling GOSUB, again helping to identify the actual function of
the subroutine. Note lines 110 and 500 in Figure 3.4-8.

Local Variables

One of the general philosophies about variables is that a variable
name should never be used for more than one thing. For instance,
if the variable I is used to hold the total of a calculation one place
in the program, it is poor practice to later reuse I as, say, an index
variable for a loop. This is true even if you know that you won’t be
needing the value of the total again, making the variable name I
“free.”

An extension of this idea is to create “local” variable names for
subroutines. This can be done by appending some type of tag, unique
to the subroutine that the variable is used in, to the end of all variables
in the subroutine. One simple approach is to number each subrou-
tine, and use the number of the subroutine as the tag. For instance,
if you want to use the variable I in the first subroutine that you
create, name the variable I1. Then, when you want to use I in the
second subroutine, use 12, etc. The only problem with this scheme
is that it can be difficult to remember which subroutine has what
number.

Another approach is to use a part of the beginning line number
of the subroutine as the tag, for instance, all the numbers to the left
of the tens place. For a subroutine that begins at line 610, I would
use local variables ending in the tag 6, such as 16 or TOTALS6. For
a subroutine that begins at line 1310, I'd use 13 as the tag, etc. Notice
that the variables for the subroutine in Figure 3.4-8 all end in 5.

In this way, all variables used within a subroutine are guaranteed
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unique to that subroutine. In addition, a variable can easily be iden-
tified with its subroutine during debugging. Simple naming conven-
tions are always helpful for keeping track of things in a program.

Parameters

BASIC does not allow us to define formal parameters in a subroutine.
However, input and output parameters can easily be simulated.

For input parameters, simply identify all those variables to be
used by the subroutine that get their values elsewhere. Assign them
to local variables immediately before entering the subroutine, before
the GOSUB call to that routine. From that point on, never refer to
the variables that act as actual parameters, but only to the local var-
iables that the actual parameters initialized. In the example subrou-
tine, NUMBR was the actual parameter, while the local variable NUMS5
is used as a formal parameter. Notice that NUMBR is never referred
to again within the subroutine. NUM5 is used instead.

For output parameters, simply assign them the values of local
variables immediately after returning from the subroutine. Never
refer to the actual parameters in any other part of the subroutine
code; use local variables instead. In the example, S5 is used to make
the calculation of the sum, but the final value of S5 is assigned to
the actual output parameter, SUM, immediately after the GOSUB
call to that routine.

If a particular variable is to be both an input parameter and an
output parameter, simply do both the input initialization and the
output setting.

Finally, as a reminder, identify all input and output parameters
in the comments at the beginning of the subroutine. Also, I find it
helpful to include a list of the parameters in the comment attached
to the calling GOSUB statement (see Figure 3.4-8, lines 130, 501,
and 502).

I 3.5 OPTIMIZATION

Up to now, we have been concerned with the maintainability of a
program and have introduced many techniques to improve that qual-
ity. This has not come without cost, however. In general, the gains
in maintainability have been made at the expense of the efficiency
of the program.

There are two types of efficiency to be concerned about. The
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first is speed, i.e., how fast the system is able to execute the code of
the program. The longer a program is, and the more complex it is,
the more time it will take the computer to execute the required
instructions.

The second type is space efficiency. In this case, we are more
concerned with how much memory a program requires. If the pro-
gram you are developing is approaching the upper limit of the mem-
ory size of your computer, it will somehow have to be condensed.

Unfortunately, not only do we trade off efficiency when we use
structured techniques, but we also usually have to trade speed for
size, and vice versa. Balancing the two requirements can, at times,
be very tricky. Usually, however, the choice of which to take, speed
or size, is obvious. In the rare occasions where both speed and size
are a concern, you should use assembly language for developing
your program.

Speed Optimization

Because of the nature of interpreted languages, BASIC is easier to
optimize in some ways than Pascal. This is because every line of code
executed in a BASIC program must be translated into machine lan-
guage each time the line is encountered. The code being executed
1s the source code, i.e., the BASIC instructions themselves. In a com-
piled language such as Pascal, the entire program is translated into
machine language at once, and it is this machine language version
that is then executed. Such a compilation performs some automatic
optimization of the code. For instance, all comments are removed
during compilation. This gets them safely out of the way.

For BASIC, then, there are two easy steps that can be taken that
may speed up execution significantly. The first is to remove all com-
ments from the code. This speeds up the program because otherwise
the interpreter would have to explicitly ignore each comment every
time it was encountered during the execution.

It is not necessary to manually remove all of the comments you
have worked so hard to add. Indeed, it is important to keep a version
of each program with all of its comments intact for maintenance
purposes. The program given in the appendix will remove all com-
ments from a program. Use this compression program on a copy of
your program to create the version that will actually be executed.

The second method of speed optimization for BASIC programs
is to move all subroutines and user-defined functions to the begin-
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ning of the program. The best spot is probably just after the program
header. This speeds up the program because most versions of BASIC
must scan the entire program looking for the line number of any
subroutine you call with a GOSUB. Putting the subroutines at the
beginning means that they will be found faster.

I didn’t recommend putting subroutines in this location when
we discussed the program format because I feel that it makes the
program a little more difficult to read. In addition, it requires placing
a GOTO statement prior to the first subroutine, which will branch
to the first statement of the instructions section of the main program.
This is quite unappealing, from a structured point of view.

For both BASIC and Pascal, there are two more possibilities for
increasing the execution efficiency of a program. The first is to
remove as many subroutine calls as possible, moving the code directly
into the main program instead. This is certainly obvious for modules
developed as subroutines that will be called only once in the program.
For subroutines that are called from more than one location in the
program, copying all of the subroutine code into each place where
it is needed would be tedious. However, it will definitely increase the
speed by eliminating the overhead involved in making a subroutine
call.

Finally, eliminate as many references to external programs and
routines as possible. In the case of BASIC, this means eliminating
chaining and merging, and including other code files. This means
merging the source files of programs, not waiting until the program’s
execution for this. For Pascal, eliminate calling other programs that
have been compiled separately.

Space Optimization

Again, attempting significant optimization of the space requirements
of a program can be extremely complex. Luckily, there are a few
methods that can be applied that will provide some relief:

1. Comments should be eliminated from an interpreted language
program in order to conserve space. Each character in a comment
takes up 1 byte of memory. Comments can easily increase the
size of a BASIC program, for instance, by as much as fifty per-
cent. Again, removing comments from a program that is going
to be compiled will not have any effect on the amount of memory
it requires.

2. Minimize the size of all data structures as much as possible. Don’t
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make an array’s size larger than it really needs to be. Eliminate
extra arrays if possible.

3. Use files instead of internal data structures. If it is possible to
keep data in a file for use, don’t use an array to store it in memory.
Read a file only one or two records at a time. Don’t read the
entire contents of a file into memory all at one time unless ab-
solutely necessary.

4. Although it violates previously discussed guidelines, when nec-
essary you should eliminate duplicate code by using subroutines.

5. Using global variables can save some space. This should be han-
dled with extreme caution, however. The most likely variables to
make global are complex data structures such as arrays and
records.

6. The net space that a program requires can be regulated using
what are usually called overlays. This means breaking the pro-
gram up into segments. Only one segment is kept in memory at
any one time. When the code of another segment is required, it
is read into memory, overlaying the memory used by the previous
segment. The code of the previous memory is therefore no longer
in memory. Such overlays can be created in BASIC using CHAIN
commands. This method is greatly facilitated through the use of
modularity, since segments can be easily constructed out of
modules.



Human-
Engineered
Programming

l 4.1 INTRODUCTION

What are the characteristics of human beings that must be considered
when developing a user interface? We must somehow take into ac-
count the various psychological factors that affect a human’s under-
standing of a given situation. It is always dangerous to use an “av-
erage” psychological profile of a user, since the deviations from this
average can be quite wide. However, it is still necessary and possible
to identify certain factors that are of consistent concern when dealing
with users.

These factors can be easily identified by simply observing users
at work. The techniques that a system uses to communicate to the
user, and the user employs to communicate to the system, can be
observed in action to reveal what users find annoying or helpful.
Experimenting with several types of interfaces with different types
of users should then make it possible to isolate the good and the bad
techniques.

This has, in fact, been done informally by software designers for
many years. As a result of these trial-and-error experiments, the
attributes of “good” user interfaces have been identified fairly well.

188
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It turns out that many of them are embodiments of simple common
sense, the poor man’s psychology. The fact that they are not incor-
porated into more programs can only be attributed to unconcerned
managers or lazy programmers.

Operator Skill

After the specific audience of a system has been identified, the user
interface should be devised to match the skill level of the expected
users. This is certainly one of the most time-consuming techniques
for a programmer, especially if it is necessary for the same system
to address more than one class of user.

For the novice, it is important to “lead the user by the hand,”
providing numerous examples. This must be carefully handled so
that jargon is minimized. The programmer must assume that the
user at this level knows nothing about how to use any system and
keep constantly in mind that the user will be confused by every
decision that must be made.

To minimize confusion, the programmer needs to anticipate what
information the user must have in order to make a decision. For
experienced users, the information may be trivial. For the novice,
however, it will usually be substantial.

It will often be necessary to create a dynamic system, one that
changes as the user becomes more experienced with it. This often
requires breaking the system up into multiple programs, one for
each level of user. A feature that provides gory details for a novice
will quickly bore a more experienced user.

User Reinforcement

Although the normal path for users is to progress from novice to
middle-class user, that transition may not be discrete. It is not rea-
sonable to assume that one day the user is a novice, and the next he
or she is experienced. In addition, even an experienced user might
want to use a feature he or she has not tried before, thereby re-
gressing to the novice stage briefly.

This should lead to a system that, at the middle-class level, allows
the user to enter a novice state for a short time, and then reenter
the middle-class state. This transition should be simple and obvious.
It is not fair to make the user be in either the novice class or the
middle class exclusively.
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In addition, it is important that the user always know exactly
where he or she is within the system. There should be obvious sign-
posts to point out the possible paths to be taken at any time, for
more experienced users as well as novices. As we will discuss in a
later section, the exact style of the signposts may be different for
each class of user, but something should exist for every level.

A common technique for providing this facility is the menu. In
this type of interface, the user is presented with a list of functions
that can be performed. The user then selects an item from the menu.
Menus are not difficult to develop, and can offer a great deal of
reinforcement to the user. In addition, it is a simple way of letting
the user know exactly where he or she is in the system at any time.
Most systems that are described as “user friendly” are menu-driven.

We will not discuss the specific techniques for creating a menu-
driven system, since such techniques are very computer- and lan-
guage-dependent. The reader is instead referred to the sources listed
at the end of this book for additional reading.

Feedback

Another way of providing the signposts needed by a user is to provide
constant feedback about what the system is doing. This is especially
true if the system is currently involved in a procedure that will take
a significant amount of real time to accomplish. The user should
always be informed when the system will be busy for a while. A
message on the screen lets the user know that the system didn’t just
go off into limbo.

In addition, itis important to keep the user informed about every
action that has been requested, no matter how simple the acknowl-
edgment. Such feedback lets the user know what the system is doing,
giving him faith that what he has requested has indeed been accom-
plished. Given the many suspicions that novice users tend to have
about computers, this is quite important.

Finally, all feedback should provide only positive reinforcement
for the user. Derogatory messages and flippant remarks may seem
like fun to the programmer but will definitely not be appreciated by
users. When the user has done something incorrectly, identify as
nearly as possible exactly what has been done wrong. In addition,
suggest to the user how to correct his or her mistake. This keeps the
user from having to guess what to do next.
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Consistency

Ambiguity in a program reduces the effectiveness of the user, re-
quiring him either to make a decision with incomplete information,
or to waste time searching the documentation for a resolution to the
ambiguity. Therefore, rules should be established for interacting
with the user, and these rules should be followed religiously. This
eventually provides the user with the means to make assumptions
about how things work in the system.

A negative, albeit trivial, example is the local automatic bank teller
machine. Some of the messages it displays are surrounded by quo-
tation marks, while others are not. I have not been able to discern
any difference between these quoted and unquoted messages. This
is only slightly annoying to the purist in me, but I can certainly
understand how someone less familiar with computers might be con-
fused about this difference in message formats.

Consistency will be discussed in more detail in the Designing
Outputs section later in this chapter.

Memory Demands

Finally, it is important to minimize the demands on the human mem-
ory as much as possible. It has been shown that humans have a
remarkable capacity for remembering the most trivial details. How-
ever, human memory is also extremely fickle. We don’t seem to have
much control over which details we remember.

The system should not assume the user remembers every mnstruc-
tion he or she has been previously given. Using abbreviations is,
therefore, to be discouraged. The problem is that the same abbre-
viation used in two different systems would probably have entirely
different meanings. This would prove confusing to any user, no
matter how experienced.

A mechanism for providing some type of help facility for the
user is the ideal way to limit the memory requirements. Such a facility
can usually be entered at any time by the user. It provides details
about how each part of the system works, what the various commands
of the system are, and what the formats for inputs are. Help facilities
can be very complex, and they are usually reserved for large systems
such as word processors or spread sheet packages. The reader 1s
again referred to the sources at the end of the book.

The least that should be provided, as noted earlier, is some mech-
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anism for the user to return to a lower level. Returning to the novice
level, for instance, when faced with a confusing situation should make
it possible for the user to get more details about what he or she is
expected to do. However, it is necessary that such a mechanism be
quite smooth and easily used. The user should be able to return to
his or her original level without difficulty.

This technique is often handled by setting up a special key or
command that the user enters to get help. The input routines used
throughout the program must then trap (look) for this key or com-
mand, sending the user into a sub-module that provides the help
facility. The most fundamental system would simply output a long
list of instructions for the user in the hopes that the user’s specific
problem has been anticipated and included in this list. The most
sophisticated system would allow the user to request additional in-
formation on a particular item. In this way the user would not have
to be bothered with the details of unrelated items. Leaving the help
facility should then return the user to the exact spot he or she left
to enter the help sub-module.

|4°2 DEALING WITH ERRORS

There are two main concerns when developing software using hu-
man-engineering principles. The first is that the user interface is as
natural and comfortable to use as possible. The second, which is just
as important but, unfortunately, all too often forgotten by software
developers, is the error handling capabilities of the system.

Robustness

The objective is to develop a system that thoroughly handles most,
if not all, errors that might arise during the use of the system. Such
a system is called robust. The system should never have an error
that leaves the user hanging, not knowing what to do next, but should
trap such errors and let the user know, in as much detail as possible,
what went wrong.

One characteristic of a robust system is that the program never
lets the operating system generate a message. For instance, in BASIC
programs, a frequently occurring message generated when an input
error is made is “REDO FROM START.” This cryptic message is
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extremely difficult for novice users to understand and usually leaves
them in a state of total confusion. A robust program would prevent
this message from ever being generated by trapping the input suf-
ficiently.

Another characteristic of a robust system is that it helps the user
identify and correct his mistakes. Identifying errors is often difficult
because it requires locating the source of the error, rather than where
the error manifests itself. (This is discussed in more detail in Chapter
5.) In addition, the robust system should offer suggestions to help
the user correct his or her mistake. None of this is easy, and such
features can cause even a simple system to become quite large and
complex. The programmer must, therefore, make a conscious de-
cision about how much support the system will give to the user, i.e.,
what level of robustness the system will maintain.

Types of Errors

There are several ways that errors can be classified. We will look at
two such classifications.

To begin with, we can identify errors as either fatal or non-fatal.
Fatal errors make it impossible for the user to continue. Such an
occurrence is often called a system crash. When this happens, usually
all work done with the system up to the point of the crash is lost.
This is obviously the worst possible event.

When a non-fatal error occurs, it is possible for either the system
or the user to correct the error and continue. A non-fatal error is
usually the result of some mistake the user has made, such as entering
the wrong date.

A second way to classify errors is according to cause. There are
three main causes of error. The first is a bug in the program itself,
i.e., an error in the code. This type of error is introduced by the
programmer and cannot usually be dealt with by the user. This is
certainly the most frustrating type of error for the user, because the
system usually completely crashes or gives incomprehensible results.

Programmers must necessarily promote the notion that programs
are infallible. This gives users the faith to use computers. Otherwise,
users are too quick to suspect a bug, and do not spend enough time
looking for errors they themselves have made. However, such blind
faith makes a program bug much more devastating for the user when
it does occur. Having one’s deepest faiths shaken is never a pleasant
experience.
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This is the main reason that all the other techniques discussed
throughout this book are so important. They are the most active
means currently available for developing software with as few bugs
as possible. They are aimed directly at preventing programming
errors, and so directly benefit the user.

Next, errors can be caused when entering data. These are ob-
viously user errors. User errors should always be non-fatal. Unfor-
tunately, few systems successfully trap (i.e., find and handle) all types
of errors that a user might make. Any user error that is not found
can cause a fatal error, which leads ultimately to user dissatisfaction.

Such data errors can occur in two ways. The first is that the user
has made a physical mistake, such as entering the wrong date or
not entering the date in the proper format. This is the simplest type
of error to trap and will be discussed in detail in the Designing Inputs
section later in this chapter.

Much more difficult to identify are logical mistakes. In this case,
the user has been asked for a particular type of data that must follow
specific rules. Consider, for example, a program that will classify
types of triangles, such as right (having one ninety-degree angle),
scalene (no sides of equal length), isosceles (two sides of equal length),
or equilateral (three sides of equal length). The user is supposed to
enter three Cartesian coordinate points, and the program would then
identify the type of triangle created by those three points. What
would happen if the user entered three points that make up a straight
line? There would be no triangle that could be constructed by these
points. Thus, a logical inconsistency results.

Another example of a logical error is trying to use nonexistent
or empty files. Such a situation could result from a physical error,
such as entering the wrong file name because of a typing mistake,
but it could also be the result of an error that erased a file or some
anomaly that caused it to be empty.

Finally, errors can be generated by calculations. This might take
the form of non-fatal errors, such as in the case of erroneous output’
resulting from truncation or rounding errors. Fatal errors could also
result, however. An example is a “divide by zero” error, where the
divisor of a division operation is zero. This particular example is
always fatal.

Calculation errors are somewhat more difficult to deal with than
the other types because they are often dependent on the type of
computer and programming language being used, as well as on the
specific subject of the application. These factors can affect the pre-
cision of variables, which is often responsible for calculation errors.
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How to Deal with Errors

Now that we have some idea of types of errors, we can move on to
the various concerns for handling errors. Three main areas that must
be addressed are: preventing errors, detecting errors, and correcting
errors.

Preventing Errors

Most of what we have been concerned with up to now has been
preventing programming errors in a system. The techniques dis-
cussed in Chapter 5, Program Testing and Debugging, further sup-
port this effort. In addition to preventing programming errors, how-
ever, we must engage in defensive programming.

This technique requires the programmer to assume that the user
of the system will do something he or she isn’t supposed to do. If,
for instance, you indicate that a particular input cannot be negative,
you must be prepared for the user who will, in fact, enter a negative
number. This technique greatly complicates input routines, but it is
essential to eliminating the largest source of errors, bad user input.

The essence of this approach is to anticipate the mistakes that
users will make and to develop screening routines to filter out bad
input. We can identify input as “bad” by relying on the data defi-
nitions of items for which we have set up variables. Recall from
section 1.4, Dealing with Data, that data can be defined with a variety
of attributes, the main ones being value, type, range, and precision.
The ones of concern for developing effective input screens are type,
range, and precision. With the data definitions providing details
about these attributes for each data item used within the system, we
can easily establish whether or not a particular input conforms to its
defined attributes. If not, then the user has obviously made a mistake.

Detecting Errors

Discovering that an error has occurred in the code is much more
difficult than eliminating the most obvious input errors by using
screens. The problem is that an error could be present at any time
during the execution of the system. Locating the source of the error
is difficult even for human beings to accomplish efficiently. Since
computers are not (yet) self-aware, it is extremely difficult for a
program to identify errors in itself.

We cannot hope to detect all types of errors that develop despite
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our best efforts to prevent them. We can, at best, look for certain
kinds of logical and calculation errors.

Logical errors will be highly dependent upon the purpose of the
system. For instance, in the triangle program example given above,
the mechanisms devised for detecting logical errors will be quite
specific to geometry. It is necessary, therefore, that the programmer
have a firm understanding of the program’s subject matter. This is
not always easy, but will go a long way toward creating a system that
can detect logical errors.

Other kinds of logical errors are easier to trap. The most obvious
ones have to do with logically empty conditions. This occurs with
files when a file does not exist or is empty. It also occurs with loops
when, for instance, the initial value of the loop control variable al-
ready exceeds the final value given in the loop header statement.
This may be perfectly all right in some contexts, but it is deadly in
others. Loops should be scrupulously examined for such problems.

In the case of calculation errors, the programmer must again
anticipate what type of errors might occur. For these errors, we are
still concerned with the data and its attributes. Key data should be
checked at strategic spots throughout the program to verify that the
values of that data fit the attributes defined. “Strategic spots” would
include after complex calculations, upon entering or exiting mod-
ules, or prior to outputting the data.

The only other calculation type error that can easily be detected
is dividing by zero. It is not too difficult to add code along the lines
of:

IF divisor is zero THEN call error routine
ELSE result = dividend / divisor

This is the only sure method of eliminating this type of error.

Correcting Errors

This is the most difficult area of dealing with errors. Even if the
program is intelligent enough to detect a wide range of errors, it is
seldom possible for the program itself to correct errors.

For errors that have been created by the program itself, there is
little that can be done. In the case of a code error, it is impossible
for the computer to change itself so that the error no longer exists.
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The programmer must obviously be involved in this level of correc-
tion.

It might be possible for a program to correct some types of
calculation errors. For instance, errors in type or precision might be
correctable if the program knows how to translate from the present
form of the data into the correct form. This massaging of the data
is not easily accomplished, however.

For errors in value, including range, there is usually not much
that can be done. While it is possible to force a data value into a
specified range if that value has suddenly gone outside of that range,
what should the new value be? There is no heuristic that the pro-
grammer can use to determine this in all cases.

Most errors that are correctable have been made either by the
user directly, as in the case of entering bad data, or indirectly, through
calculations made with the data supplied by the user or obtained
from files. For this reason, most methods that attempt to correct an
error in the data involve the user in some way.

The simplest approach, and the one taken by the vast majority
of programmers, is to output some type of error message and end
the program. This raises the classification of user error involved from
non-fatal to fatal. While this may be necessary for errors that have
occurred in data files or were created by calculation, obviously this
is not appropriate for errors made by users entering bad data. The
program should, instead, enlist the aid of the user in identifying the
source of the error and correcting it. This is obviously a difficult
procedure when dealing with data file and calculation errors, since
the source of the error may be far removed from the knowledge or
expertise of the user. This approach is usually only possible when
dealing with highly sophisticated users, in the upper-middle or ex-
pert class.

In the case of calculation errors, however, it may be possible to
trace them to data that the user entered. At the very least, a program
can require the user to verify all of the data he or she has entered
up to that point. The program can, perhaps, run additional diag-
nostics on that data to ensure that it is not the source of the current
problem. If the error can be traced to user data, the correction
procedure is obvious.

As mentioned previously, it is usually possible to construct some
type of screening mechanism for keeping bad data out of the system.
The procedure is quite simple, and involves a loop that allows the
user to correct any mistake that is immediately identified by the
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system. Such loops have already been used in the algorithm examples
in Chapter 2. The general format of such loops is:

REPEAT
input a value from the user
UNTIL the value is valid

This procedure requires that at least some of the attributes of
the data are known and can be tested for. A simpler form of this is
sometimes called a feedback loop, because it feeds the value entered
back to the user for visual verification:

REPEAT
input value from the user;
output the value to the user
UNTIL user verifies the value.

This form of the error trap is useful especially when the attributes
of the data being input are too broadly defined to be of much help.
In addition, this is a very important technique for eliminating typing
mistakes by the user, a very large source of errors. The method is
not always possible, however, since the way data is entered can affect
the ability of the program to trap the input. For instance, it is neither
desirable nor possible to verify the input of a joystick in most ap-
plications. The error trap method described is appropriate for any
input that can be essentially considered as discrete. This would in-
clude any input from a keyboard, most input from a mouse, and
only some types of input from a joystick.

The best approach is to combine the two loops above into a single
trap:

REPEAT
input a value from the user;
output the value to the user
UNTIL (the value is valid) AND (user verifies value).

This covers all bases. Note that the program’s validation of the data
occurs before the verification by the user. This is appropriate, since
there is no need to bother with the user verification if the data
entered does not conform to the proper format.

Some type of error message should be generated when an error
has been detected in the system, even if the program itself is going
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to make an attempt to correct it. The art of creating understandable
messages will be discussed in section 4.4, Designing Outputs.

I4-3 DESIGNING INPUTS

This section will expand upon this concept of preventing any data
that the user enters from causing errors in the system. In addition,
we will be concerned with creating one-half of the user interface for
a system, namely how the human user communicates with the ma-
chine. In this case, we will want to take data in a form that is un-
derstandable to a human and translate it into a form the computer
understands. We will not be so much interested in this translation
process as in what the user understands he or she is to enter. This
overlaps somewhat with the design of appropriate outputs, since we
need outputs to tell the user what to enter.

Communicating with Machines

We would like to be able to simulate the various modes that humans
use when communicating with each other—sound, sight and touch—
so that humans can use those natural means when communicating
with a machine. The ideal is to create a user interface that a human
could use in exactly the same way that he or she communicates with
other humans. Unfortunately, this requires not only advances in the
current technology used for communication, but also advances in
the way a computer understands things. The area of artificial intel-
ligence is deeply involved in this type of research. Until this ideal
level of communication is possible, it will be necessary to construct
devices that simulate, as well as possible, these natural modes of
human communication.

Characteristics of Communications Devices

Let’s first examine some of the characteristics of the various devices
that can be used by humans to enter information into a machine.

First, we can classify devices as being either direct or indirect.
Each time a direct device is used, there is an immediate, observable
effect on what the program is doing. The user associates the device
being used directly with the action that occurs.

An indirect device is more passive in nature. The device itself is
not readily identified with a specific function. As a result, such a
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device is largely symbolic. The circumstances surrounding the mean-
ing and use of such a device are largely context-dependent. As a
result, the meaning associated with an indirect device changes not
only from application to application, but within a single application
as well.

Next, a device is either discrete or continuous in nature. In a
discrete device, the values entered are exact and individually distinct,
and the user must recognize the discrete values that may be entered.
A watch with a digital display gives time the appearance of being
discrete, in that it projects an exact time, usually down to the second.
Most inputs will use discrete values, since this is easier for humans
to understand.

A continuous device enters values in a theoretically infinite range.
Real numbers in mathematics are continuous in nature, since you
can have an infinite number of decimal places. Floating point num-
bers in a computer are really discrete, since there is a limit to the
number of decimal places stored. An analog watch (one with hands)
shows time as a continuous quantity, which it truly is. This situation
is similar to the real number concept, in that time can be divided as
minutely as we wish, even though doing so may be of no practical
value.

Most continuous inputs are approximated with discrete values in
a computer system. However, we can consider some devices contin-
uous because they give the appearance of continuous inputs. This
illusion is seldom a problem. Truly continuous input devices do exist
but are not well-suited to human use.

Finally, we can consider some inputs to be real-time inputs. In
this case, the inputs have an immediate affect on the execution of
the program. The term real time refers to the fact that the computer
is expected to respond to the input within the objective time of the
user. A real-time system must be able to react to its environment
quickly enough to affect its own inputs.

Where there is a human user involved, this real time is dependent
upon the user’s reaction to outputs from the system. Therefore, the
user must be able to enter information into the system as quickly as
possible. There is an implied feedback loop containing the user’s
visual system and the method of entering data. Since most input
devices require using the hands, this generally implies a high degree
of hand-eye coordination. The system must react within a period of
time that appears normal to the user. Events displayed on the screen
must not be so fast that the human eye cannot record them, the
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human brain interpret them, or the human nervous system react to
them.

As a result of the unreliability of human response time, most
real-time systems do not include human users in the feedback loop,
but are instead hooked to sophisticated sensing devices that provide
the necessary inputs. This is usually called process control. An ex-
ample of this would be an automatic pilot for an airplane. However,
there are examples of real-time systems that do include human users
directly. The most notable are video games.

Audio Devices

In the case of the audio mode, there is, unfortunately, little that can
be done. While there are some exciting prospects in the field of
speech recognition, most developments are still experimental. This
is because, even though we might all use the same words, other
attributes of speech make it extremely difficult for a computer to
recognize sounds as words. For instance, speed, voice inflection, and
accent can all change the characteristics of the sound produced by
the human vocal system. Unfortunately, the computer’s inability to
interact with the human voice eliminates the most natural form of
communication for human beings.

Other types of audio communication are not appropriate for
developing the input portion of the user interface. Although with
training a human can produce beeps and whistles easily recognizable
by a computer, such a method of input would hardly be natural (at
least for most people).

For the time being, these problems completely eliminate audio
input for communicating with computers.

Visual Devices

Devices that rely upon the visual ability of a human are typically text-
oriented. They most often require the user to interact with the system
using words, either in a natural language or, more likely, using an
artificial vocabulary.

However, some of the more interesting systems use special sym-
bols called icons to communicate with the user. These icons graph-
ically represent actions that the machine is able to perform. Instead
of using words to instruct the computer to perform these actions,
the user merely points, in some manner, to the proper icon. This
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informs the computer that the user wishes the function designated
to be performed.

TEXT DEVICES It is possible to simulate at least one method of
visual communication for use in the user interface. Since written
languages have a definable vocabulary, all that is required is to create
a device that simulates the human capability of writing by hand. A
typewriter-style keyboard can obviously be used for such a purpose.

The keyboard is the most frequently used and most misunder-
stood input device. There are several reasons for this. First, its flex-
ibility makes it useful for a wide range of applications. Unfortunately,
it is this flexibility that is the cause of its misuse. It is an inherently
difficult device to master, requiring great manual dexterity to use
efficiently.

Second, there is no standard design for a keyboard. Although
the arrangements of keys in the QWERTY pattern is standard, the
size of the keys and their spacing is not standardized. In addition,
computer keyboards have many specialized keys not found on type-
writers. The arrangement of these special keys is at the complete
discretion of the manufacturer. To make matters worse, the set of
special keys is not even a defined standard. Few manufacturers’ key-
boards have the exact same keys.

Third, the names and the functions of these special keys are often
quite mysterious. This is especially true for keys that seem never to
be used. Names such as CTRL, ESC, and PF1 do not lead to ready
identification of a particular function for those keys. Even more
confusing is that the function of certain keys can change from one
application to another.

Fourth, the keyboard is mostly an indirect device, in that nothing
happens until all the keys are properly struck. The keys must usually
be combined in order to impart any information. It is very difficult
to attach any particular meaning to a keyboard. All work with the
keyboard is essentially symbolic. Nevertheless, the special keys can
sometimes take on the characteristic of being direct devices, thereby
adding to the confusion.

Fifth, the keyboard is obviously a non-real-time device. Usually
nothing else can be going on in the system while the program is
waiting for input. This is fine for most applications. However, when
real-time input is required, some other device will need to be used.

Finally, it is too easy to make a mistake using a keyboard. It is
difficult to learn where all the keys are so that they can be struck
proficiently. Changing keyboards can require relearning the location
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of the keys as well as a readjustment of the movements necessary to
strike them accurately.

Because the keyboard is such a flexible device, special forms of
the keyboard can be designed for specific functions. The most com-
monly used alternate keyboard is the numeric keypad, used to enter
large quantities of numbers. Other keyboards can be designed for
other special purposes.

There is even a keyboard that rearranges the alphabetic keys so
that the most frequently used keys are located directly underneath
the fingers. This is called the Dvorak keyboard, named after its
inventor. He developed this style of keyboard because the most com-
monly used format, the QWERTY keyboard, was designed specifi-
cally to slow typists down. Because of the technology that was avail-
able when the typewriter was first implemented, a typist who was
too fast would cause the keys to lock up. Spreading out the keys in
the QWERTY format slowed most typists down enough to avoid this
misfortune.

POINTING DEVICES A mouse is another type of visual device.
It is becoming increasingly popular because it allows some inputs to
be done in a (seemingly) more natural way than a keyboard. Although
it is technically a continuous device, it is most often used in a discrete
mode to allow the user to point to various discrete boxes or icons
being displayed on the video screen. The mouse is used to position
the cursor on the icon. The user must then push a button on the
mouse to direct the program to perform the function indicated by
the icon.

Using icons and a pointing method is a very direct way of com-
municating with a computer. It provides a general device, a pointer,
and a special device, the icons, developed specifically for a particular
application. Using the mouse pointer is very similar to using special
function keys on a keyboard. The beauty of icons, however, is that
they graphically represent their functions so that the user can easily
learn to associate a function with its icon. This is certainly at the
heart of the mouse’s growing popularity.

There may be one or more buttons on a mouse. Unlike the special
keys on a keyboard, these buttons often have specific meanings that
are independent of the application being used. Unfortunately, some
manufacturers’ concepts of a mouse are different from others, mostly
in terms of how many buttons a mouse should have. Since the mouse
is used by one hand, some designers have placed as many as five
buttons on their mouse. The most commonly used design appears



HUMAN-ENGINEERED PROGRAMMING

204

to be the three-button mouse. At least one computer company has
decided that only one button is needed. Unfortunately for them,
they have discovered that, as a result, some operations require the
user to press keys on the computer’s keyboard in addition to the
button on the mouse. This makes what should have been a one-
handed operation a two-handed operation, a definite disadvantage.

In addition, because the user can observe an immediate response
from the system when the mouse is used (i.e., the cursor moves
“immediately” when the mouse is moved), this is sometimes thought
of as a real-time device. However, since the user does not need to
react in real time, even though the computer does, the mouse is not
usually considered a true real-time device. Nothing happens in the
application until the user presses a button on the mouse to inform
the computer that the current position of the cursor points to the
function the user wants performed.

There are two other devices that can be used in a pointing mech-
anism. The first is a rather old device, the joystick, which was used
as a pointer long before the mouse became fashionable. It has many
of the same characteristics as the mouse when used in this manner.
Most joysticks include at least one button. The main reason the joy-
stick is not used instead of the mouse is that the physical character-
istics of the joystick do not make it as easy to use for pointing. It
must either be firmly mounted on some solid surface or held in two
hands. In addition, on many joysticks, two hands are required to use
both the joystick and the buttons at the same time.

However, many forms of the joystick can be used in exactly the
same way as a mouse to point to icons on a screen. In addition, the
Joystick can be used as a real-time input device. This is obvious from
game programs that use the joystick to manipulate figures on the
screen immediately when the stick is moved. This makes the joystick
especially suited for use in simulation programs, which are typically
real-time in nature.

Another technology that is enjoying a rebirth for use as a pointer
is the touch screen. With this device, the user simply points at the
icons on the screen with a finger. This makes the device mostly
transparent to the user, since the sensing device is built into the
screen and no obvious device or skill needs to be mastered.

This mechanism enjoys most of the same benefits as the other
pointing devices described above. However, its biggest disadvantage
is its lack of resolution and, therefore, precision.

The touch screen employs a method of dividing the screen up
into predefined blocks. Any of these blocks can be referenced in-
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dividually within an application. The system can detect the finger
within any of the blocks. Unfortunately, the blocks must be large
enough to accommodate the typical human finger. In addition, the
blocks must be large enough that the human user knows precisely
which block he or she is currently pointing to, without accidentally
allowing his or her finger to enter one of the surrounding blocks.
As a result, a reasonable block size might be one inch square.

A typical video screen might be about ten inches by seven inches,
allowing for, at most, seventy distinct points that can be “touched”
on the screen. This sounds like a lot until you realize that most icons
cannot be easily represented in a one square inch box. It often re-
quires several boxes to represent the icons used. In addition, it is
necessary to space the icons sufficiently so that the user does not
easily enter the defined space of the wrong icon accidentally.

Finally, another device that can be used easily for pointing is the
light pen. With this device, the user points to the screen with the
pen. The computer is able to detect where the screen is being pointed
to using light-sensitive diodes and a coordinate system very similar
to the touch screen mechanism. It is a much more precise device
than the touch screen, however, since the area pointed to by the light
pen can be much smaller than that necessary for the touch screen.
Used in this fashion, a light pen is a discrete, direct, non-real-time
device.

GRAPHICS DEVICES The joystick and the light pen can both be
used for entering graphical data into a system. For such use, the
devices are used in a continuous, rather than a discrete, mode. This
is because lines must be considered continuous, even though we know
that, when represented using any graphical device, they are actually
made up of individual dots. Our eyes perceive these dots as a solid
line whenever the dots are close enough together.

Another device, sometimes called a digitizer pad or a graphics
tablet, also provides a means to enter graphical data. In this case, a
touch-sensitive pad is used with a special stylus. Moving the stylus
across the pad enters the points crossed on the fine grid of the pad.
This grid is similar to that used for devices such as the touch screen.
The resolution of this device is higher than can be achieved with
most other devices, however, and is much more easily controlled.

This, too, is a direct, usually continuous, non-real-time device.
The qualification “usually” here is because the types of devices being
described as continuous to this point are really only simulating con-
tinuity using discrete technology.
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Tactile Devices

A truly tactile device would be one that could sense a change in the
amount of pressure exerted on it. This would require a continuous
device. However, since we can simulate continuous devices with a
number of discrete devices, we can also simulate tactility.

The most notable example of a tactile device is the joystick. In a
real-time mode, the distance that the stick is pushed in a particular
direction serves as an indication of the degree of change that should
take place in the program. For instance, in a simulation of an air-
plane, pushing the stick forward can be used to force the nose of
the plane down. The further the stick is pushed forward, the faster
the nose goes down.

Using the joystick in this fashion requires getting the proper
“feel” for how far the stick must be pushed in which direction in
order to achieve the desired effect. This is the first important factor
to be mastered in learning to play a video game, and will be important
in any simulation that uses such a real-time device.

Other devices can also have this tactile quality without being
considered real-time devices. For instance, a graphics tablet can be
used to draw pictures. The pressure used when moving the stylus
across the tablet can indicate how sharp a line is drawn, or how deep
a color is “painted.” The user must learn to use just the right amount
of pressure in order to create the desired picture.

A light pen, to a lesser extent, can be used in the same way.
However, the lower resolution of a light pen makes it more difficult
to use as a tactile device.

Techniques and Guidelines

Now that we have explored some of the characteristics of devices,
and examples of specific types of devices, we can at last begin dis-
cussing how inputs can be designed in order to support the user as
well as possible.

Choosing an Input Device

The first task is to decide which input device will be used for each
input that must be made. The objective is to use the most natural
device for entering the particular information involved. This is often
at odds with expedience, however, since not all computers are equipped
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with a wide range of input devices. When alternatives are available,
the programmer should not choose the keyboard as the sole entry
device simply because it is the easiest to program for.

Since the vast majority of inputs will be done using a keyboard,
the rest of the methods discussed here will deal with using this in-
hospitable device. Using the other devices for input is more a matter
of the mechanics involved than the philosophy of the device’s use.

Command Entry

There are two main types of input that the user must enter. The
firstis instructions to the application. Any such instruction will simply
be called a command.

A command is any indication by the user that he or she wants a
particular function performed by the system. The set of commands
for any application is contrived entirely by the programmer, who
must devise commands that do not confuse the user, are readily
understood, and are easily remembered.

First, commands should have simple, yet meaningful names. This
directly aids the user by making the commands easy to remember.
Names should not be too similar in spelling, sound, or meaning,
since this can lead to confusion for the user.

Second, allow abbreviations for the names of commands, espe-
cially long ones and those that are used frequently. Abbreviations
should be more than a single letter, and should still attempt to be
meaningful. A common technique is to use the first few characters
of each command as the abbreviation. Obviously, the number of
characters used must be sufficient to ensure uniqueness in the ab-
breviated names.

Third, use special function keys to indicate commands whenever
possible. This allows the user to set up templates that describe the
function for each special key used. Not only is this method of input
quicker for the user than typing in a word or phrase, it also makes
it unnecessary for the user to remember the exact command. He
can instead concentrate on the function that he or she wants per-
formed.

If the keyboard being used does not have special function keys,
do not substitute control codes, however. Holding down the control
key and some other alphabetic key is an unnatural action, and is
difficult for some combinations, depending on the location of the
control key. In addition, there is often no connection between the
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keys used and the function being performed, so that there is no
memory aid for the user. Use whole word and abbreviated commands
instead of control codes.

Fourth, display the list of commands for the user whenever pos-
sible. This at least reminds the user what the valid commands are.
Even better is allowing the user to select from this list, or menu, the
command he or she wants to perform.

Finally, allow the user to back out of a potentially harmful com-
mand. For instance, for any command that would erase a file, ask
the user if he really wants this to happen. This occasionally saves a
user from himself when he enters the wrong command or does not
fully consider the consequences of an action.

Data Entry

The second type of inputs that a user must enter are various types
of data. The principles discussed in this section are independent of
the data’s type.

INPUT SCREENS To begin with, data entered by a user should
be carefully screened to prevent an error in the system. Such screen-
ing should verify that the data entered conforms to the type, range,
and precision defined for that data item. In addition, the user should
be given an opportunity to correct any error.

In BASIC, this requires inputting all data as strings, rather than
as a combination of string and numeric data. Entering a string input
by accident when the variable on the INPUT statement is numeric
causes the system to reject the input and generate the “REDO FROM
START” message. As discussed in section 4.3, Dealing with Errors,
we don’t want the operating system itself to generate error messages
for us because they tend to be cryptic and uninformative. Each pro-
gram should create its own error routines.

This can be a problem in other languages as well. Entering the
wrong type of data may cause the program to crash. An equally
devastating prospect is that the erroneous input may be accepted,
but the value that is assigned to the input variable will be garbage.
In such an event, the user may not even be aware that an error has
occurred.

FORMAT CONSISTENCY Next, input formats should be con-
sistently handled. If the data to be entered is a date, the format
should be the same every place in the program that a date is entered.
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Don’t require dashes (~) separating the month, day, and year in one
place, and slashes (/) in another. In addition, be consistent about
when a carriage return is required. Use sparingly inputs that require
only one key to be struck. People are used to hitting the return key
after each data item, and one-key items do not give the user a chance
to change his or her mind about what has been entered.

DEFAULTS Next, it is possible to create default values for many
inputs. When the user does not enter a specific value, the default
value is automatically assigned. The user, of course, must be thor-
oughly familiar with the defaults of a system in order to ensure that
any defaults used are acceptable.

For example, the user might be asked to enter today’s date at
the beginning of the program. Then, whenever a date is required
as input, the user has the option of allowing the system to use that
date, which has become the default value, or of entering another
date. Another example might be the area code of a phone number.
A standard default of the local area code might be used as a con-
venience if most calls will be local.

There are two main purposes for default values. First, they help
the user by being a shorthand way of entering specific values that
are used frequently. This speeds up the input process. Second, they
help to lower the error rate for data entry, since a default value is
always valid data. There will never be a typo in a default value.

However, using defaults in a system can introduce new ways for
logical errors to occur. The user may use a default value without
realizing it, and that value might be incorrect for what the user is
doing. This is especially likely since default values are easy to enter,
usually requiring only one or two keystrokes.

As a result, whenever a default value is used, the user should be
explicitly informed of the fact. This can usually be handled with a
simple warning statement, such as “WARNING: THE DEFAULT
VALUE 09/08/84 IS ASSUMED.” At the very least, the default value
should be displayed and verified by the user in exactly the same way
as any other input.

ASSUMPTIONS In every program, the programmer makes some
assumptions about the way the program should work, the environ-
ment it will operate in, and the users of the system. Many of these
assumptions are deliberate, and should be fully described in the user
documentation. There is a danger, however, that a programmer will
instill many assumptions into a system unconsciously. These assump-
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tions never appear in the user documentation, because the program-
mer was not even aware of them. Nevertheless, the unwitting user
can encounter many problems as a result of these hidden assump-
tions. They introduce a potential source of error and can make a
system quite difficult to use.

For example, it is usually assumed—unconsciously because we
are used to it—that a person’s name is made up of a first name, a
middle name, and a last name. However, there are many people who
have more than three names. In addition, many men have distin-
guishing tags on the ends of their names, such as Jr., Sr., or III.
Many software systems are only interested in the middle initial, not
the entire middle name. But this can cause problems for people
without middle names, or those who go by their middle names and
use a first initial.

Another source of difficulty arising from assumptions has to do
with order of input. We assume that the natural order of entering
a person’s address is street, city, state, and zip code, and for such a
well understood set of information, this order is natural and should
obviously be followed by the programmer. However, an appropriate
order of input is not always so well understood by the programmer.
He must obviously choose some order, and will likely choose one that
he assumes to be natural. But it is important that the programmer
consult potential users to verify that the order chosen is suitable. An
order that is perceived by users as awkward will cause a great deal
of frustration.

OPTIONAL ENTRIES Finally, values for many data items do not
need to be specified by the user when an input is requested. These
optional inputs, however, can create some dilemmas for the user.
For instance, consider a request for a name that specifies that the
name should be entered as first name, then middle name, and finally
last name. A valid entry would be “Arthur Tyrone Williams.” We
might even get away with something like “Arthur T. Williams.” But
what if the person whose name is being entered doesn’t have a middle
name, or the name is unknown? How should the name be entered?
The user was instructed to enter three items, with the middle name
as the second item. If the user enters “Arthur Williams,” will “Wil-
liams” be taken as the middle name?

This can get even more confusing when default values are used
in optional entries. The user must be explicitly informed when he
or she is allowing the system to use a default value for an optional
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entry, as well as how to designate that he does not wish to enter a
value for that item. For instance, an asterisk (*) or some other special
character that is unique within the system could be used as a substitute
for an optional value. The method of entering no value for an op-
tional input should be different from the one used to indicate that
the system should substitute a default value.

I 4-4 DESIGNING OUTPUTS

The main object of designing outputs is to supply useful information
to the user, provide feedback about errors, and help the user to
assimilate the information generated by the system. These functions
are not always easily performed, and mean some extra work for the
programmer. In some companies, such “niceties” are considered to
be expendable bells and whistles. The often-used excuse for not
including these features is, “The need for the system is so urgent. A
working system without these features is better than a system with
these features that is delayed a month.”

Such excuses are usually the result of bad planning. The system
life cycle of any program should include sufficient time to fully im-
plement the system, including all of these “bells and whistles.” Good
ouput features are an integral part of the system and cannot be added
at a later date. Such retrofitting invariably winds up either poorly
done or costing ten times more than if the work had been done
originally.

In addition, the management that makes such a decision ob-
viously does not understand the saving that is implied by guaran-
teeing satisfied users. Such users do not inundate the programmers
with questions about the system, nor do they make frequent requests
for additions to the system. In the long run, a little extra effort at
the original implementation phase can save enormous amounts of
maintenance work.

Forms of Communication

The computer has three main forms of output. These forms make
up the only ways that the computer (and the programmer) has to
communicate with the user. Most modern systems, especially micro-
computers, can employ all three of these modes.
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Text

The standard output device today is the video screen. The printer
is a close second. For both of these devices, the main way to display
information is as text, where the system generates various types of
messages for the user to read. As with the keyboard, the text format
for output is the most general form, and is, therefore, the most
difficult to use well.

Most programmers use this form of communication exclusively,
which would lead one to suspect that programmers have developed
text output to a fairly high level. Nothing could be further from the
truth. Applying Sturgeon’s famous ninety percent rule (Legend has
it that Theodore Sturgeon, a well-known science fiction author, was
once asked why ninety percent of science fiction literature was so
bad, to which he replied, “Because ninety percent of everything is
crud!”) is very easy when dealing with this type of output. It is usually
cryptic, ambiguous, often misleading, and almost always riddled with
jargon.

Let’s now look at the four main uses of text in a system.

INSTRUCTIONS Instructions are a series of narratives that ex-
plain to the user how to use the system. Instructions can be either
general or specific. General instructions are usually given at the be-
ginning of the program, and explain the general purpose of the
system. However, such general instructions can be used throughout
the program whenever a new function is entered.

Specific instructions provide the details about what the user is
expected to do. These are often developed into an elaborate help
facility that the user can consult at any time during the execution of
the program. This is an especially effective method of supporting
the user.

In order to provide a system that is flexible enough to adjust to
the level of the user (from novice to expert), an effective technique
is to provide at least three levels of instructions. The first level is
used for novices and provides a very comprehensive set of instruc-
tions. The second level is intended for more experienced users. It
provides an abbreviated form of the instructions. These instructions
are somewhat more difficult to write, since they must include the
meat of the information in a condensed version yet still be explicit
and unambiguous. Finally, the most advanced level probably offers
no instructions at all. Unfortunately, this is the level most program-
mers provide instinctively.
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INFORMATION This type of text does not require a response
from the user. However, the user is expected to read and compre-
hend this text, since it is likely that the user’s future interaction with
the system will be influenced by it. An example of this type of text
are headings that describe what the values in a report are.

PROMPT MESSAGES This is probably the most familiar type of
text, and is also the one area of output that most affects how a user
interacts with the system. This text provides specific messages to the
user indicating that input of some kind is expected.

It is extremely important that the user know as much about the
input he or she is expected to enter as possible. This is sometimes
difficult, given the constraints of the amount of information that can
be fit on a screen. The design of prompt messages should be taken
quite seriously by the programmer.

ERROR MESSAGES These messages indicate to the user that he
or she has either done something incorrectly or caused something
to be done incorrectly. Error messages probably confuse users more
than any other type of output because most error messages are, at
best, cryptic.

Graphics

In recent years, there has been a great deal of advancement in the
area of providing more output modes than simple text. The most
notable advances have been made in the area of graphics output.
These graphics are used to draw pictures that either provide useful
information themselves or simply assist the user in understanding
what the system is doing.

SHAPES The resolution of the lines that produce shapes is very
important in making a picture that is recognizable. The thicker the
lines have to be, the lower the resolution of the picture, and the less
easy it is to recognize.

According to current, though controversial, medical theories, pic-
tures appeal more to the brain’s right hemisphere, while words are
interpreted by the left hemisphere. Providing pictures to accompany
text, then, gets more of the brain involved. Pictures are also a more
direct, immediate method of communicating, since they do not al-
ways need to be interpreted. However, even when symbolism is used,
the interpretation can be much faster than when words are used.
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COLOR  Color is used in graphics in a secondary role. Its primary
purpose is to help distinguish objects. Color can also be used to help
make text more readable, or to make certain portions of the text
stand out. For example, error messages might be displayed in red,
while the rest of text is displayed in standard white on black.

Finally, color can be used to add character to an otherwise am-
biguous shape. This is especially necessary when the resolution of
the hardware is low. For example, a tree shape might be more rec-
ognizable if it is displayed in green.

ANIMATION Animation can be defined as any visual change in
the display. It is most often thought of as being some form of a
moving picture, such as is used in making cartoons. This is certainly
the most advanced form of animation and is particularly useful in
showing dynamic processes in simulation systems that represent real-
world events.

However, simpler forms of animation can be used to draw at-
tention to a particular area of the screen. An example of this is a
blinking cursor that identifies where on the screen the next output
will appear. Some computers and languages allow the user to make
words or sentences blink. This can be used, as color is, to make a
particular section of text stand out, such as in the case of error
messages.

Animation is also helpful in letting the user know that the pro-
gram is still working when there is a lengthy computation. Using
some form of simple animation when there is such a delay informs
the user that the program has not simply gone off into limbo. This
is often more reassuring than a simple text message.

Audio

The third mode of computer output is audio. The effects that are
possible using this mode range from quite simple to very complex.
Audio usually plays a secondary role, acting to enhance, reinforce,
or “punctuate” the visual output of text or graphics. As in the case
of graphics, audio adds to the user’s means of interpretation.

NOISE The lowest form of audio output is noise. In a strict sense,
noise is an uncoordinated sound that cannot be distinguished by the
human ear. However, the main audio output of most computer sys-
tems, the beep, can be rightly called a noise even though it is rec-
ognizable as a computer beep.
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This beep is not associated with any single purpose except to get
the user’s attention. Its most usual use is to indicate that the user is
supposed to do something, such as enter an input. A beep can also
be used to warn the user that he or she has done something wrong,
such as entering an incorrect input value, or to indicate that the
computer is involved in some action. For instance, the system might
beep every second or so during a long delay for a complex calculation
or while inputting from a tape.

SOUND A sound is any audio output that is recognizable to a user
as representing some event, action, or thing. An example would be
musical tones. Not every computer system is capable of creating
sounds, and even those that can produce sounds such as musical
tones cannot usually generate other types of sounds. Sounds add an
extra dimension of meaning to other types of output and are seldom
used by themselves to convey information, mainly because of the
difficulty of conveying factual information with sounds, no matter
how elaborate.

The prime example of the use of sound output is the video arcade
game. Even those with little experience in playing these games can
quickly recognize the various sounds of firing phasors, slamming
doors, exploding rockets, or breaking glass. Music is used heavily,
and often the music is used to convey information, such as the arrival
of the villain. Such “lifelike” sound effects can add tremendously to
simulations of real-world events.

VOICE The most complex form of sound is voice output. Voice
synthesizers have become quite sophisticated and can be used effec-
tively to convey factual information. The more advanced systems are
easily understood, even though there are usually a few different
syllables that sound alike or are slurred.

Such systems are even quite inexpensive. They can be found in
a number of children’s educational devices and toys. The famous
Texas Instrument’s Speak-and-Spell was one of the earliest consumer
devices to utilize this technology. Today, even automobiles talk.

However, just because it is possible to synthesize speech doesn’t
mean that its application will be appreciated by the user. For instance,
a local grocery store used such a device to announce the price of
each item that was scanned using their new UPC code optical scanner.
The synthesizer salesman convinced the store manager that this would
make it easier for customers to accept the scanning device. The price
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of each item was also displayed using the more traditional video
display.

It turned out that the customers hated the voice output. First, it
was additional “noise” in an environment already filled with noise.
Second, the characteristics of the voice itself were annoying. Cus-
tomers generally found the voice grating. Third, and perhaps the
most important point, customers did not like the idea of having their
purchases announced in such a way that anyone within fifteen feet
of the checkout counter knew what they were buying, or (even worse)
how much they were spending. Within a month, the speech syn-
thesizers were removed from the store.

Techniques and Guidelines

Text output is the most commonly used form of communication from
the computer to the user. Unfortunately, it is also the most abused
as well as the most easily misunderstood by the user, since it cannot
help but include all the ambiguities that exist in written language.
As a result, we will concentrate on methods that can be used to
improve text communication.

Message Outputs

The various messages that a system generates are frequently the
source of a user’s confusion. Such messages need to be quite explicit
and completely unambiguous in order for users to fully understand
what they are expected to do next.

PROMPT MESSAGES To begin with, prompt messages should be
as explicit as possible about what is expected from the user. Such
explanations usually require more than the one or two words that
most prompt messages comprise. These cryptic messages usually do
more harm than good.

Prompt messages should provide explicit details about the input’s
format, type, valid range, and necessary precision. In addition, it is
usually helpful to provide some example of what the input should
be. For example, a prompt message to enter a date might be

Enter Today’s Date as Month/Day/Year (e.g. 03/20/84):

An example of an inappropriate prompt message is taken from one
of the most popular operating systems. When the user first starts
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the computer, he or she is faced with a message

Current date 1s Sat 10-01-1983
Enter new date:

The first line of this message gives the date that is currently under-
stood by the system as being today’s date. The second line is where
the user is expected to enter today’s date if it differs from the date
given in the first line.

There are two things wrong with this prompt. First, it appears
that the first line gives an example of the format for the date the
user is supposed to enter. A user unfamiliar with this system is likely
to enter a new date such as “Fri 09-22-1984.” Unfortunately, this
will be rejected by the system. The problem is that the user is not
supposed to enter the day (i.e., “Fri” in this case), but only the date
(09-22-1984). The result is instant confusion and frustration.

The second thing wrong with this prompt is that it does not
indicate that the date given in the first line will be used as a default
if the user simply hits the return key when asked to enter a new
date. Since a novice user undoubtedly does not realize the conse-
quences of allowing the default to be used, this is a potentially dan-
gerous situation.

Presenting complex prompts can often be difficult and can re-
quire a lot of text that must be read and understood by the user.
This is not always beneficial, since once the user gets used to how
particular inputs are handled, he or she will mostly want to ignore
the details of the prompts. The only way around this dilemma is to
have a multilevel system that can differentiate between novice, ex-
perienced, and expert users. This would require constructing at least
three different prompts for each input. Even if this is not practical,
however, at least two forms should be available, a full description
and an abbreviated form.

Since this mechanism usually requires a great deal of space, it is
often necessary to remove at least the full descriptive messages from
the program. They can be stored on a message file and keyed so
that they can be selected randomly. This slows the system down, but,
in itself is not a problem for the user who needs the full message.

Next, the prompt messages and their associated inputs should
use natural formats, i.e., formats that are the easiest for the user as
opposed to formats that are the most convenient for a computer.
For example, decimal numbers should be used at all times, even
though hex